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Executive Summary 

The goal of the ASCAPE project is to provide data driven assistance to preserve and 
improve the Quality of Life (QoL) of cancer patients. The deliverable reports on the 
first development of model training algorithms and model-based assistances and their 
evaluation. The work is based on anonymised retrospective datasets available at the 
pilot sites of ASCAPE and addresses all steps in the process of incorporating data 
with possibly missing values, differential privacy methods to prevent inference of 
personal information from model, the predictive model training styles for federated 
model training and on homomorphically encrypted data, and up to methods to obtain 
explanations of predictions and intervention suggestions based on trained models. All 
developments have been conducted on a fixed set of ten training datasets and 
evaluated according to exactly the same techniques and metrics. On these datasets 
regarding methods for initial data preparation steps were evaluated and lead to two 
results: first, missing value inference by simple methods is as effective as missing 
value inference by more complex regression methods and thus sufficient. Second, 
privacy-enhancement by differential privacy should be using the Laplace mechanism 
with an ! value around 1. In locally trained models, training of models for classification 
and for regression was considered.  Five algorithms for training classification models 
and nine algorithms to train regression models were evaluated using the same 
datasets and the result was that the naïve Bayes classifier yields the best classification 
models and Lasso regression the best regression models. In a simulation of federated 
learning, based on a preliminary evaluation, swallow neural networks trained on large 
batch sizes were selected for classification tasks and deeper neural networks trained 
on small batch sizes were selected to train models in both incremental and semi-
concurrent federated learning mode for two to four edge nodes. The results show no 
significant differences in the learning modes and were close or even better in 
classification tasks compared to the locally trained models, but in regression tasks had 
higher prediction errors with a tendency of increasing errors with the number of edge 
nodes. Models trained on homomorphically encrypted data are weaker due to the fact 
that only Stochastic Gradient Descent optimizers are currently available. For 
explainability of model predictions, the SHAP framework was identified as the best 
basis for feature attribution and trained surrogate models showed overall good to 
excellent approximation of the target model. Finally, a simulation method based on the 
identification of key features in the predictive models was developed, to suggest best 
treatments for a specific patient, exploiting the knowledge encoded in the trained 
predictive models. Future next steps have been identified and the overall evaluation 
whether the foreseen machine learning methods can result in useful, data-driven 
assistance to help improving the quality-of-life of patients is conclusive. 
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1 Introduction 

The goal of the ASCAPE project is to provide data driven assistance to preserve and 
improve the Quality of Life (QoL) of cancer patients. To this end,  datasets from cancer 
patients shall be used to train predictive models for QoL indicators. These models will 
then be used for predicting quality of life evolution for specific patients and propose 
interventions that have a beneficial effect on it. The training of the predictive models 
will be based on datasets collected continuously at the four pilot site partners in 
Greece, Spain, Sweden and UK, and extended with datasets from further participating 
partners included during the open call. Privacy of patient data is among ASCAPE’s 
highest concern and a number of measures are applied in the ASCAPE system, such 
as that patient data is always pseudonymized and never leaves the premises of the 
participating site except if completely encrypted. In order to accommodate the 
distributed training of predictive models, specific federated model training schemes 
are proposed, that support the federated learning and especially the flexible addition 
and removal of participating partner sites. The goal of the present deliverable is to 
report on the first development of model training algorithms and model-based 
assistances and their evaluation.  
 
The deliverable is structured along the process from incorporating and curating data, 
developing and evaluating different predictive model training styles using that data, 
and using such models to obtain explanations of predictions and suggestions for 
interventions. As prospective data collection was about to start only in ASCAPE pilots, 
retrospective datasets available at pilot sites were used as the basis for the presented 
methods. Section 2 presents the selected retrospective datasets, the selected target 
variables and how a fixed set of 10 training datasets have been derived from them. 
They are used as a common ground for all further developments to ensure the 
comparability of their evaluations. Section 3 presents different methods for missing 
value imputation and compares their performances as well as variants of differential 
privacy methods and their comparison to prevent inference of information about 
specific patients from trained models. Section 4  is the main part of the deliverable, 
which presents the evaluation of different model training methods on local datasets, 
in federated style and on homomorphically encrypted data. All training algorithms have 
been applied on the 10 training datasets and evaluated according to the same metrics. 
Section 5 then evaluates methods to infer explanations for predictions obtained from 
such models. Section 6 reports on experiments on how to obtain an assessment of 
interventions with respect to their effect on quality of life based on the predictive 
models. The main results and achievements of these first experiments towards 
developing machine learning based assistances are summarized in section 7.  
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2 Training Datasets and Targets 

2.1 Training Datasets 

Since prospective datasets were not available, experiments for the proof of concept 
have been based on the retrospective datasets. Three datasets have been provided 
by the pilot site partner from Örebro in Sweden which contained datasets with 
anonymized medical data of patients diagnosed with breast cancer and of prostate 
cancer. The datasets vary in the number of samples/patients, the number and 
composition of medical data fields and the target variables. While this makes the direct 
comparison and alignment of the datasets difficult, they offer a great variety of data 
types, formats and other challenges that need to be addressed for machine learning. 
AI prototypes created based on these datasets therefore are a good reference for the 
work coming regarding the prospective datasets. 
 
The retrospective datasets are not transformed to the HL7 FHIR format but are 
arranged as a table saved as CSV-format. Each row represents a different patient and 
each column represents one variable (a field in a patient's medical data). 
 
A variable can be a date or duration, categorical data, ordinal data, information about 
a patient like the age of diagnosis, scores for standardized medical questionnaires and 
measurements done during treatment. At a later stage, prospective datasets will be 
transformed to FHIR. Not all fields contain valid data, mostly because a certain 
treatment has not taken place. This yields the possibility to add additional variables 
during pre-processing which mark if a treatment has taken place or not. To identify 
these fields human input is needed. 
 
For experimentation, two of three retrospective datasets were deemed suitable: Breast 
cancer BcBase dataset (18988 rows x 47 columns) and Prostate cancer Orebro 
dataset (2466 rows x 124 columns). 
 
The Örebro dataset (ORB) contains 2466 health records of prostate cancer patients 
with each containing 124 variable fields. After 3 weeks and again in at months 6, 12, 
18, 24, 30, 36, 42, 48, 54, 60, 72, 84, 96, 108 and 120 after the diagnosis, a follow-up 
examination s scheduled for the patient, in which he reports about bowel side effects, 
erectile function and lower urinary tract symptoms. Additionally, for the follow-up dates 
at months 36, 60 and 120, the International Prostate Symptom Score (IPSS) and the 
LISAT-11 Quality of Life Score  were collected from the patients. The LISAT score will 
be used as a target field and always has a value between 11 and 66. The health data 
collected at the different follow-up examinations forms sequential data, although in 
non-regular time steps.  
 
The second dataset BcBase contains patient data of 18988 breast cancer patients. It 
contains 47 variables per sample. The high number of samples makes it especially 
resistant to overfitting, thus deep neural networks can be trained with it easily. The 
dataset also contains socio-economic indicators like marital status, education status, 
personal income and household income. 
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The third retrospective dataset, a breast cancer dataset from Sormland, was not used 
for experiments, because it is very similar to the BcBase dataset, but only contains 
232 samples. 
 
All datasets contain information about medical interventions being done. Analysing the 
model outputs depending on whether an intervention has been done or not, will be the 
foundation to the suggestion of interventions for other patients. 
 

2.2 Target Variables for Training 

Variables that are suitable to be used as target variables should yield information 
about something that is not easily measurable in a real-world scenario. An example 
for this is medical data that can only be collected in the future and are not yet available. 
ASCAPE will examine on hypothetical changes in the patient's medical data to 
propose treatments and interventions. Since such a simulated medical file is not linked 
to a real patient, information about quality of life can only be estimated by an AI model. 
The ORB dataset contains LISAT-11 QoL scores at the time of the diagnosis and three 
different times relative to the date of diagnosis at months 36, 60 and 120. The dataset 
will therefore be used to train models to predict future LISAT-11 QoL scores. It is split 
into a variety of datasets with the naming scheme ORB-n-m containing all variables 
up to month n and the QoL score in month m. These datasets are then used to train 
predictive models for a LISAT-11 QoL score in month m based on the data available 
until month n. For instance, ORB-30-120 will be used to predict the LISAT-11 QoL 
score for month 120 based on all variables that are available up until the follow-up in 
month 30. The same scheme is used to create the experiment datasets ORB-30-36, 
ORB-30-60, ORB-30-120, ORB-54-60, ORB-54-120 and ORB-108-120, respectively. 
The BcBase dataset does not have QoL scores but contains information whether 
medications to treat pain, anxiety, insomnia, or depression were given to the patient. 
This dataset is then used to create datasets to train binary classifiers which estimate 
if a patient has one of these conditions. The classification scores of the trained models 
can be used for risk assessment. The datasets were created by dropping all but one 
medication variable and keeping all other variables to obtain the datasets BcBase-
Anxiety, BcBase-Pain, BcBase-Insomnia and BcBase-Depression. 
 
These datasets (6 ORB-m-n and 4 BcBase-m) were used for all following AI-related 
procedures to have a common ground when comparing performance and results. The 
training datasets and all subsequently derived datasets and models were stored in a 
common repository to ensure traceability and quality control over datasets, used 
algorithms and obtained trained models. 
 
On these datasets the following data pre-processing actions are implemented: dates 
transformation, one-hot encoding, and missing values imputation. In the end, 4 new 
datasets are obtained from the BcBase dataset, representing binary classification 
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problems, and 6 new datasets are obtained from the Orebro one, representing 
regression problems: 

1. BcBase-Anxiety (18988 rows x 99 columns) – the model is trained on 97 
features and it should predict if the patient will have anxiety problems after the 
breast cancer treatment. The output is 0 if the patient will not suffer from anxiety 
or 1 otherwise. 

2. BcBase-Depression (18988 rows x 99 columns) – the model is trained on 97 
features and it should predict if the patient will have depression problems after 
the breast cancer treatment. The output is 0 if the patient will not suffer from 
depression or 1 otherwise. 

3. BcBase-Insomnia (18988 rows x 99 columns) – the model is trained on 97 
features and it should predict if the patient will have insomnia problems after 
the breast cancer treatment. The output is 0 if the patient will not suffer from 
insomnia or 1 otherwise. 

4. BcBase-Pain (18988 rows x 99 columns) – the model is trained on 97 features 
and it should predict if the patient will have pain problems after the breast 
cancer treatment. The output is 0 if the patient will not suffer from pain or 1 
otherwise. 

5. ORB-30-36 (1138 rows x 98 columns) – the model is trained on 96 features 
measured till month 30 and it should predict the quality of life after 36 months 
from the beginning of the prostate cancer treatment. The output is a number 
between 11 and 66. 

6. ORB-30-60 (1042 rows x 98 columns) – the model is trained on 96 features 
measured till month 30 and it should predict the quality of life after 60 months 
from the beginning of the prostate cancer treatment. The output is a number 
between 11 and 66. 

7. ORB-30-120 (610 rows x 98 columns) – the model is trained on 96 features 
measured till month 30 and it should predict the quality of life after 120 months 
from the beginning of the prostate cancer treatment. The output is a number 
between 11 and 66. 

8. ORB-54-60 (1024 rows x 126 columns) – the model is trained on 124 features 
measured till month 54 and it should predict the quality of life after 60 months 
from the beginning of the prostate cancer treatment. The output is a number 
between 11 and 66. 

9. ORB-54-120 (610 rows x 126 columns) – the model is trained on 124 features 
measured till month 54 and it should predict the quality of life after 120 months 
from the beginning of the prostate cancer treatment. The output is a number 
between 11 and 66. 

10. ORB-108-120 (610 rows x 160 columns) – the model is trained on 158 features 
measured till month 108 and it should predict the quality of life after 120 months 
from the beginning of the prostate cancer treatment. The output is a number 
between 11 and 66. 
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3 Privacy-aware Data Curation  

The first methods for the preparation of the datasets for the machine learning 
algorithms were to impute empty data points and to create data sets from applying 
differential privacy to ensure privacy. The resulting datasets were all reused then for 
the subsequent training algorithms again to allow for their comparison. 

3.1 Training of Models for Missing Value Imputation and Evaluation  

3.1.1 Completing Datasets by Missing Value Imputation  

All the training datasets from section 2.2 contained a number of missing values. Since 
certain machine learning algorithms are not applicable on data with missing values, 
we had to perform additional transformations of our datasets. 
 
First, we removed all the instances that had not had a value for the target attribute 
– such instances cannot be used for training nor testing of our predictive models. After 
that, we performed imputation of missing values within the rest of the instances. 
 
For the missing values imputation, we used two algorithms from a Python library scikit-
learn [1]: simple imputer and iterative imputer. Simple imputer is a rather simple 
approach, which fills missing values within a single attribute by using the mean of the 
attribute’s existing values. Iterative imputer is a bit more complex: it creates a 
regression model for each attribute and then fills missing values of an attribute with 
predictions obtained from the attribute’s regression model. A regression model for a 
single attribute is fit on instances with non-empty value for that attribute. After filling all 
the missing values, iterative imputer repeats the whole procedure for predefined 
number of times. 
 
For the missing values imputation with iterative imputer, we do not use a dataset’s 
target attribute. If the target attribute were used, the regression models of the iterative 
imputer would be fit with target values, which must not happen since it would introduce 
erroneous dependence between predictors and target attribute. 
 
Finally, we applied these two missing values imputation algorithms on each dataset 
described in section 2.2, resulting with two variants of each dataset: 1) simple imputer 
variant, and 2) iterative imputer variant. These datasets are now ready for the model 
training. 
 
Implementational details regarding missing values imputation can be found in 
Deliverable D3.1 – Cancer-care predictive analytics and decision-making services: 
proof of concept demonstration. 
 
3.1.2 Dataset preparation for cross-validation 

The AI techniques considered in the next sections will be compared to each other by 
cross-validation. To make cross validation results of different experiments 
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comparable, we created 10 folds within each dataset, and then used these folds in all 
the experiments. Before creating the folds, the order of dataset instances was 
randomized, and then stratification was applied. 
 
For each dataset, the last column contains values from 0 to 9, representing the folds 
to which the instances are assigned. Therefore, from each of the 10 datasets, 10 
groups were created, groups that were used accordingly to the 10-fold cross-
validation method. This method implies splitting the dataset into 10 groups and for 
each unique group, the group is considered to be the test dataset, and the remaining 
groups are taken as the training dataset. Hence, there are 10 new datasets formed 
from the main dataset, on which the models are trained and tested. After this, an 
aggregation of the outputs is made, and the evaluation metrics are computed and 
reported.  

3.2 Differential Privacy 

Differential privacy (DP) is a main privacy preserving technique used within ASCAPE 
project. It represents a sophisticated privacy protection technique which does not 
require any insights into the structure of knowledge of attackers, nor does it require 
the reorganization or restructuring of the dataset. Differential privacy is based on the 
idea that the outcome of the query posed to protected database is essentially equally 
likely independent of whether any individual joins or refrains from joining the database. 
In such a way the private data about a particular patient is protected since the system 
returns the result with the same probability whether a particular patient was involved 
in the analysis or not. 
 
Differential privacy is not a unique algorithm, but a methodology which can be used 
for developing a wide variety of algorithms. The general idea of DP is explained in the 
following definition: a randomized algorithm " is ε-differentially private if for all 
neighbouring databases #! and #" (databases which differ only in one row) and for all 
sets Ω of possible outputs the following condition holds: 
 

%&[A(D!) ∈ Ω] ≤ 0# ⋅ %&["(#") ∈ Ω] 
 
The parameter ! is called the privacy budget. This parameter controls the level of 
privacy of the algorithm ". Smaller values of ! mean stronger privacy. The value 0 
represents total privacy, but the usability of such an algorithm is none since in that 
case algorithm represents pure randomness.   
 
There are several mechanisms to implement DP, but the most common are: Laplace 
mechanism, Gaussian mechanism and Exponential mechanism. Laplace mechanism 
is most commonly used for numeric types of data, and it consists of adding Laplacian 
noise (a noise which follows Laplace distribution) to the data model. Furthermore, in 
machine learning algorithms noise could be added in different ways: a) to the training 
dataset, b) to the prediction model itself (for example in edge weights in neural 
network), and c) to the predicted results of the model. Within ASCAPE project, first 
option will be applied as the simplest one, but still sufficiently general and robust. 
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As expected, more noise means more privacy, but a lot of noise could lead to the 
reduction of model performance/accuracy. So, the main challenge in introduction of 
privacy preserving techniques in machine learning models is the optimal balance 
between privacy and the utility of models. This section will present some initial results 
of applying DP to machine learning models on retrospective datasets in ASCAPE 
framework. The implementation of relevant DP component which is used for 
generation of presented results is described in Deliverable D3.1 – Cancer-care 
predictive analytics and decision-making services: proof of concept demonstration. 
 
The DP analysis presented here was performed on the ORB-30-36 dataset, which 
predicts the LISAT-11 QoL score in the month 36 on the basis of data available up to 
month 30. The LISAT-11 QoL score is a number in the interval 11-66 so the following 
regression methods were applied (as explained in sections 4.3 and 4.5): 

• LINEAR: linear regression  
• RIDGE: ridge regression  
• LASSO: lasso regression  
• ELASTICN: elastic net regression   
• KRIDGE: kernel ridge regression  
• SVM: support vector machine regression  
• RF: random forest regression  
• KNN: K-nearest neighbours regression  
• ADAB: AdaBoost regression 
• TFNN: Tensor Flow Neural Network 

The original ORB-30-36 dataset with already imputed missing values is treated with 
the DP component which adds a specified amount of noise. The amount of noise is 
expressed through the ε parameter. The noise is added only on numerical features 
while the categorical features, Boolean features, one-hot-encoding features and class 
features stayed untouched. The following values of DP parameter (ε) were used for 
experiments: 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 and 100. 
 
All mentioned regression models were trained with each of these modified datasets 
(datasets with added noise). For the evaluation of trained models four evaluation 
metrics were used (as explained in section 4.4): 

• MAE: mean absolute error 
• MSE: mean squared error 
• R2: coefficient of determination 
• P: Person’s correlation coefficient 

Figure 1 shows the values of four evaluation metrics for Linear regression model for 
all values of ! DP parameter (blue series). The red line shows the performance of 
corresponding metrics of Linear regressor trained with original data (without added 
noise). The x-axis represents the value of parameter ε, while the y-axis represents the 
value of corresponding evaluation metrics: a) MAE, b) MSE, c) R2, and d) P. 
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For the first two metrics (MAE and MSE) lower values means a better performance of 
the model, while for the other two (R2 and P) higher values indicate better 
performance. In all four cases the performances of the model generated from DP 
datasets with the values of ε lower than 1 (or 0.5 in MSE and R2 cases) are worse 
than the model generated on dataset without DP. This behaviour is expected since 
lower values of ! means more noise, and more noise negatively influences the 
performance of the model. However, somewhat unexpected behaviour is noticed in 
the cases where ! > 1, where DP models perform even better than no-DP models. 
Surely, these improvements are not so significant, but they are present. By observing 
these results, and the results for the other regression methods it is evident that all four 
evaluation metrics show similar behaviour for a particular model from the perspective 
of DP. So, in future results we will show only MAE measure, while the other measures 
behave similarly. 
 
 
a)

 

b)

 
c)

 

d)

 
Figure 1. The values of four evaluation metrics: a) MAE, b) MSE, c) R2, and d) P; for Linear regression model 

trained with datasets with added noise. 

 
Table 1 shows MAE values for all considered regression methods and for all values of 
DP parameter ε which is applied on training dataset. The last row represents MAE 
value for all regression models trained with data without noise addition. This value can 
be considered as the baseline value for each regressor. For better understanding, the 
MAE values of four characteristic regression models (LINEAR, LASSO, RF and TFNN) 
are shown visually in Figure 2 (p. 17). 
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Table 1. MAE values for all conducted regression methods and all values of DP parameter !. 

! LINEAR RIDGE LASSO ELASTICN KRIDGE SVM RF KNN ADAB TFNN 

0.1 6.486 6.451 6.587 6.588 6.471 6.519 6.146 6.699 6.211 7.044 
0.2 6.018 5.966 5.855 5.860 6.017 6.519 5.971 6.714 6.130 6.402 
0.5 5.486 5.438 5.334 5.350 5.465 6.519 5.422 6.705 5.548 6.356 
1 5.295 5.254 5.181 5.212 5.257 6.519 5.273 6.724 5.440 6.102 
2 5.144 5.101 5.093 5.130 5.136 6.519 5.107 6.721 5.312 5.995 
5 5.244 5.175 5.088 5.125 5.224 6.519 5.190 6.718 5.300 5.621 
10 5.217 5.129 5.092 5.129 5.181 6.519 5.097 6.714 5.288 5.840 
20 5.193 5.103 5.086 5.123 5.160 6.519 5.081 6.717 5.346 6.033 
50 5.215 5.097 5.090 5.126 5.150 6.519 5.035 6.716 5.342 6.165 
100 5.185 5.095 5.090 5.126 5.133 6.519 4.942 6.720 5.297 6.062 

No DP 5.311 5.100 5.089 5.126 5.147 6.519 5.033 6.720 5.362 6.035 
   
For almost all regression models the same pattern can be observed. For a very small 
value of ε (e.g., 0.1), the MAE is notably high. After that, MAE significantly drops with 
an increase of ε up to the value of approximately 1. For the values of ε>1, MAE remains 
approximately constant on the level of MAE of models trained with No DP data 
(baseline level).  
 
The main conclusion from this analysis is that the optimal value of DP parameter ε 
should be somewhere around or below the value 1. For the values of ! > 1 the models 
do not have significantly higher performance (do not have lower MAE), and the level 
of privacy is decreased. From the theoretical point of view, according to the definition 
of DP, this means that the ratio between two probabilities of neighbouring databases 
will be less than e, which represents a significant level of privacy.  
 
Future efforts concerning investigation of DP within ASCAPE project will be focused 
on examining privacy phenomenon in other retrospective datasets. Moreover, when 
the prospective data became available, the same evaluation will be performed on 
those data too. Based on the present evaluation, it is evident that the optimal value of 
ε should be somewhere around 1 or bellow it. Therefore, the region around value 1 
should be also investigated with higher granularity. 
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a)

 

b)

 
c)

 

d)

 
Figure 2. MAE values of four characteristic regression models (LINEAR, LASSO, RF and TFNN) 
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4 Model Training and Evaluation 

This section presents the algorithms implemented for the different model training 
styles on the datasets obtained from the procedures in section 3 after missing value 
imputation respectively with and without differential privacy.  

4.1 Training of Homomorphic Encrypted AI Models 

Homomorphic encryption is used as a privacy measure to enable both training and 
prediction of machine learning models on encrypted patient data. The HE learning is 
related to training global models on a collection of homomorphically encrypted patient 
data. During training, domain-related knowledge is extracted from the data through 
machine learning models. As the resultant model is encrypted it can be further used 
for predictions on encrypted patient data. 
For experimentation, a variant of a matrix-based homomorphic encryption scheme, 
called MORE (Matrix Operation for Randomization or Encryption) is employed to 
enable AI-based data processing on real-data. Following the MORE approach, a 
matrix-based symmetric secret key is generated upon which a numerical value is 
encrypted as a matrix and matrix algebra is employed to provide a fully homomorphic 
behaviour. All operations performed on ciphertext data are matrix-based operations, 
e.g., addition of plaintext scalars is equivalent to the addition of ciphertext matrices. 
The considered homomorphic encryption scheme is noise-free (unlimited number of 
operations can be performed on ciphertext data), non-deterministic (multiple 
encryptions of the same message and with the same key result in different ciphertexts) 
and is adapted to directly support floating-point arithmetic. Moreover, it allows a 
broader spectrum of operations to be performed over encrypted data, including non-
linear functions. 
Knowing that ultimately AI models break down to a series of repeating blocks of 
computations that rely on a limited set of simple operations over floating-point numbers 
and by leveraging the homomorphic property of the MORE scheme, the functionality 
of AI models can be extended to hold for operations on ciphertext data. Therefore, the 
MORE homomorphic encryption scheme enables the use of encrypted data for 
training and testing AI models, without requiring the content of the decrypted data. 
Training of HE AI models implies that the training patient data is encrypted with a 
secret key that is never shared. This ensures that the model has access only to the 
ciphertext data. Hence, the plaintext data remains private at the Edge Nodes and only 
the corresponding encrypted form of the data is sent to the Cloud for processing. AI-
based models are further trained directly on encrypted data by leveraging the 
properties of the MORE scheme. This results in a model that can be further applied to 
provide encrypted predictions, which can only be decrypted at the Edge Nodes.  
Based on the considered problems, classical MLP (Multi-Layer Perceptron) models 
are trained and evaluated on encrypted data, according to the 10-fold cross-validation 
method. For the moment, the MORE library can operate only with the Stochastic 
Gradient Descent (SGD) optimizing algorithm [2], which proceeds by iteratively 
estimating the gradient descent from minibatches. Relevant hyperparameters of the 
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algorithm are the number of epochs, the cost function, and the learning rate. 
Hyperparameter optimization, starting from encrypted data, is difficult to achieve 
because it is typically set upon error analysis, which is itself a ciphertext due to the 
adopted cryptosystem. As the overall goal of the study was to assess the feasibility of 
the deep neural network to operate directly on HE  data, i.e., demonstrate that the 
performance does not drop compared to the plaintext setting, we have chosen the 
hyperparameters through grid search and experimentation on plaintext data. The 
architectures of the trained models are listed in the below tables. Each table contains 
the number of layers, the number of neurons, and the activation functions.  

1. BcBase-Anxiety – the model’s architecture is listed in Table 2. It was trained 
for 250 epochs. The learning rate was chosen to be 0.05 and the cost function 
was Binary Cross Entropy. 

Table 2: BcBase-Anxiety model 

 

 

 

 

2. BcBase-Depression – the model’s architecture is listed in Table 3. It was trained 
for 250 epochs. The learning rate was chosen to be 0.05 and the cost function 
was Binary Cross Entropy. 

Table 3. BcBase-Depression model 

 

 

 

 

3. BcBase-Insomnia – the model’s architecture is listed in Table 4. It was trained 
for 100 epochs. The learning rate was chosen to be 0.001 and the cost function 
was Binary Cross Entropy. 

Table 4. BcBase-Insomnia model 

 
 

 
 
 
 
 

Layer # neurons Activation function 
Input 97  
Fully connected_1 50 Matrix ReLU 
Fully connected_2 50 Matrix ReLU 
Output 1 Matrix Sigmoid 

Layer # neurons Activation function 
Input 97  
Fully connected_1 80 Matrix ReLU 
Fully connected_2 80 Matrix ReLU 
Output 1 Matrix Sigmoid 

Layer # neurons Activation function 
Input 97  
Fully connected_1 40 Matrix ReLU 
Fully connected_2 40 Matrix ReLU 
Fully connected_3 40 Matrix ReLU 
Output 1 Matrix Sigmoid 
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4. BcBase-Pain – the model’s architecture is listed in Table 5. It was trained for 
100 epochs. The learning rate was chosen to be 0.001 and the cost function 
was Binary Cross Entropy. 

Table 5. BcBase-Pain model 

 

 

 

 

 

5. ORB-30-36 – the model’s architecture is listed in Table 6. It was trained for 100 
epochs. The learning rate was chosen to be 0.01 and the cost function was 
Mean Squared Error. 

Table 6. ORB-30-36 model 

 

 
 
 
 
 
 
 
 

6. ORB-30-60 – the model’s architecture is listed in Table 7. It was trained for 100 
epochs. The learning rate was chosen to be 0.01 and the cost function was 
Mean Squared Error. 

Table 7. ORB-30-60 model 

 

 

 

 

 

 

Layer # neurons Activation function 
Input 97  
Fully connected_1 80 Matrix ReLU 
Fully connected_2 80 Matrix ReLU 
Fully connected_3 80 Matrix ReLU 
Output 1 Matrix Sigmoid 

Layer # neurons Activation function 
Input 96  
Fully connected_1 100 Matrix Tanh 
Fully connected_2 100 Matrix Tanh 
Fully connected_3 100 Matrix Tanh 
Fully connected_4 100 Matrix Tanh 
Fully connected_5 100 Matrix Tanh 
Output 1 Identity 

Layer # neurons Activation function 
Input 96  
Fully connected_1 100 Matrix Tanh 
Fully connected_2 100 Matrix Tanh 
Fully connected_3 100 Matrix Tanh 
Fully connected_4 100 Matrix Tanh 
Fully connected_5 100 Matrix Tanh 
Output 1 Identity 
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7. ORB-30-120 – the model’s architecture is listed in Table 8. It was trained for 
100 epochs. The learning rate was chosen to be 0.01 and the cost function was 
Mean Squared Error. 

Table 8. ORB-30-120 model 

 

 

 

 

 

 

8. ORB-54-60 – the model’s architecture is listed in Table 9. It was trained for 100 
epochs. The learning rate was chosen to be 0.01 and the cost function was 
Mean Squared Error. 

Table 9. ORB-54-60 model 

 

 

 

 

 

 

9. ORB-54-120 – the model’s architecture is listed in Table 10. It was trained for 
100 epochs. The learning rate was chosen to be 0.01 and the cost function was 
Mean Squared Error. 

Table 10. ORB-54-120 model 

 

 

 

 

 
 
 

Layer # neurons Activation function 
Input 96  
Fully connected_1 100 Matrix Tanh 
Fully connected_2 100 Matrix Tanh 
Fully connected_3 100 Matrix Tanh 
Fully connected_4 100 Matrix Tanh 
Fully connected_5 100 Matrix Tanh 
Output 1 Identity 

Layer # neurons Activation function 
Input 124  
Fully connected_1 100 Matrix Tanh 
Fully connected_2 100 Matrix Tanh 
Fully connected_3 100 Matrix Tanh 
Fully connected_4 100 Matrix Tanh 
Fully connected_5 100 Matrix Tanh 
Output 1 Identity 

Layer # neurons Activation function 
Input 124  
Fully connected_1 100 Matrix Tanh 
Fully connected_2 100 Matrix Tanh 
Fully connected_3 100 Matrix Tanh 
Fully connected_4 100 Matrix Tanh 
Fully connected_5 100 Matrix Tanh 
Output 1 Identity 
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10. ORB-108-120 – the model’s architecture is listed in Table 11. It was trained for 
100 epochs. The learning rate was chosen to be 0.01 and the cost function as 
Mean Squared Error. 

Table 11. ORB-108-120 model 

 
 
 
 
 
 
 
 
 
The 10 models have been evaluated on the respective training datasets and the 
results of the evaluation are presented in section 4.5.3. 
 

4.2 Training of Federated Learning AI Models 

A federated model is a machine learning model collectively trained by two or more 
federated learning clients (ASCAPE edge nodes). Each federated learning client has 
its own dataset to train the model and those training datasets (patient data in our case) 
are not mutually exchanged, nor aggregated at some central location. Thus, federated 
learning can be considered as a secure-by-design privacy-preserving machine 
learning technique. The federated learning process is coordinated and synchronized 
by a federated learning server. In our case this component runs in the ASCAPE cloud. 
The main purpose of the federated learning server is to enable the exchange of models 
between federated learning clients during collective learning. ASCAPE federated 
models are stored in the ASCAPE cloud, which means that they are also available to 
ASCAPE edge nodes not participating in collective learning. 
 
Two federated learning modes are present and supported by ASCAPE model learning 
components: incremental and semi-concurrent federated learning mode. The 
ASCAPE federated learning process is not predetermined with respect to those modes 
and the federated learning mode for a particular model is dynamically adapted in time 
according to the presence of federated learning clients. This means that federated 
learning in ASCAPE is initiated by federated learning clients and it is not driven by the 
federated learning server according to some predefined learning scheme.     
 
In the incremental federated learning mode exactly one federated learning client 
creates or updates a model for a particular QoL indicator or intervention. Let us 
suppose that a federated learning client C wants to update the model for a QoL 
indicator/intervention Q on its dataset D. In the first step, C connects to the federated 
learning server to check whether a federated model for Q exists in the ASCAPE cloud. 
If the model for Q is not present in the ASCAPE cloud, C creates the first instance of 
the model and sends it to the ASCAPE cloud. Otherwise, C retrieves the model for Q 
from the cloud, updates it on D, and then sends the updated model back to the 

Layer # neurons Activation function 
Input 158  

Fully connected_1 100 Matrix Tanh 
Fully connected_2 100 Matrix Tanh 
Fully connected_3 100 Matrix Tanh 
Fully connected_4 100 Matrix Tanh 

Output 1 Identity 
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ASCAPE cloud from where it is available to other ASCAPE edge nodes either for 
further updating or for inference (making predictions).       
 
The ASCAPE federated learning for a particular predictive QoL model always starts in 
the incremental mode and it may switch to the semi-concurrent learning mode when 
the federated learning server detects that two or more federated learning clients want 
to create or update the same model. In the semi-concurrent learning mode, the 
federated learning server performs the following steps in a loop: 

• it waits for all federated learning clients creating/updating the model to send 
their models after performing one learning round (one iteration in the learning 
algorithm),  

• the received models are averaged into one aggregated model, 
• the aggregated model is sent back to the federated learning clients for the next 

learning round. 
The symbiosis between the incremental and semi-concurrent federated learning mode 
is achieved by the fact that model learning by federated learning clients is done 
iteratively in learning rounds. To make the switch from the incremental to the semi-
concurrent learning mode, a federated learning client currently working in the 
incremental mode after each learning round checks with the federated learning server 
whether some other federated learning client wants to create/update the same model. 
As response from the federated learning server, it either receives a message to 
continue in the incremental mode or a message to send the model to the server for 
the federated averaging. In the second case, the client receives the aggregated model 
from the server and then it continues learning in the semi-concurrent mode. 
As already emphasized, the main premise of federated learning is that the learning 
algorithm operates iteratively in learning rounds. Model parameters are refined with 
each learning round to better fit the training dataset. Additionally, federated models 
have to be amenable to some kind of averaging. Neural networks are the most natural 
choice for federated models for two reasons: (1) neural networks can be easily 
averaged by averaging edge weights and biases, and (2) they are able to effectively 
capture non-linear trends and relationships in training data. However, this choice 
comes with the price of a large parameter space, especially in the case of deep neural 
networks. Additionally, the learning of effective neural networks often requires 
computationally demanding fine grained tuning mechanisms for its hyperparameters. 
In the most common form, a neural network is a sequence of layers each containing 
a certain number of neurons or nodes. All neurons from the k-th layer are connected 
to all neurons from the (k+1)-th layer via weighted edges. The weights of neural 
network edges together with biases associated to each node constitute the set of real-
valued model parameters that are learned on a given training dataset. The nodes in 
the first layer are input values for a feed-forward mechanism of the neural network, 
the last layer contains neural network output values (predictions for input values), while 
nodes in all other intermediate layers can be considered as hidden variables through 
which input values are transformed to obtain output values. Let us assume that we 
have a dataset D composed of instances (data points, e.g., one particular patient) in 
form < 5, 7 > where 5 is the vector of input variables and 7 is the vector of output 
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variables (e.g., 5 may be variables reflecting patient state and his/her medical 
conditions, while 7 in our case is some QoL indicator/intervention).   The feed-forward 
mechanism of the neural network for an input instance p (not necessarily from D) can 
be described recursively as  

8$
(&)(9) = ;$

(&)7(&(!)(9) + =$
(&(!) 

7$
(&)(9) = σ ?8$

(&)(9)@ 

7$
())(9) = 5$(9) 

where 5$(9) is the value of A-th feature in 5 for p, 7$
(&) is the value of the output of the 

A-th neuron in the B-th layer, 8$
(&) is the value of the input to the A-th neuron in the B-th 

layer, ;$
(&) is the vector containing weights of the in-coming edges to the i-th neuron 

in the B-th layer, =$
(&) is the value of the bias associated to the A-th neuron in the B-th 

layer and D is an activation function (e.g., sigmoid or ReLU). The model parameters 
(neural network edge weights and biases) are learned by minimizing a loss function 
on D. The loss function quantifies the difference between neural network output values 
for instances in D and their real 7 values given in D. The loss function is minimized in 
a given number of epochs (one epoch is one learning round considering all instances 
in D), where model parameters are updated after processing batches each containing 
B instances (B is the batch size).   
The architecture of a neural network is determined by the number of layers and the 
number of neurons per layer, but also by the type of predictive problem solved by the 
neural network. In ASCAPE we deal with two different predictive problems: regression 
(predicting a numerical value, e.g., predicting the LISAT-based QoL index) and E-ary 
classification (predicting a categorical value from a predefined set of E categorical 
values, e.g., predicting a QoL intervention from a set of possible interventions). 
Additionally, we have a special case of classification known as binary classification 
where E	 = 	2 (positive and negative category, e.g., the presence or absence of some 
QoL condition).  Thus, in ASCAPE we have three different neural network types: 

1. Neural networks for regression. The last layer of such neural networks contains 
exactly one node activated by the linear function. The mean squared error 
(MSE) is used as the loss function to determine model parameters. 

2. Neural networks for n-ary classification. Here the last layer consists of n nodes 
activated by the softmax function. This means that a node in the last layer 
represents the probability of the corresponding category. The categorical cross-
entropy is used as the loss function when training neural networks of this type. 

3. Neural networks for binary classification. The last layer contains one node 
activated by the sigmoid function. The value of the output node higher than 0.5 
indicates the positive category, while values lower than 0.5 indicate the 
negative category. Model parameters are determined using the categorical 
cross-entropy function. 

Nodes in hidden layers of all above given neural network types are activated by the 
ReLU activation function. In our implementation of ASCAPE neural networks, we also 



  

 

 Project No 875351 (ASCAPE) 

 D2.4 – ML/DL Training and  Evaluation Report-V1 

 Date: 26.02.2021 

 Dissemination Level: PU  

 

Page 25 of 58 
 

consider various mechanisms to prevent overfitting (dropout and various 
regularization strategies, e.g., kernel, bias and activation regularization).  

The training of federated neural networks is enabled by the ASCAPE edge node core 
machine learning services that are based on the TensorFlow library [3] (for a detailed 
description of the ASCAPE edge node core machine learning services please see 
Deliverable D3.1 – Cancer-care predictive analytics and decision-making services: 
proof of concept demonstration). We also implemented fully functional prototypes of 
the federated learning server and clients, which are also described in Deliverable D3.1 
– Cancer-care predictive analytics and decision-making services: proof of concept 
demonstration. However, to foster experimentation with federated machine learning 
models and enable their evaluation for an arbitrary number of ASCAPE edge nodes, 
we also developed a federated learning simulator. This simulator is realized in the 
fedsim Python module relying on functionalities provided by tfnn module from the 
ASCAPE edge node core machine learning services (a detailed description of tfnn 
can be found in Deliverable D3.1 – Cancer-care predictive analytics and decision-
making services: proof of concept demonstration).  

The fedsim module defines the following classes: 

• DataSplitter – a class performing splitting of a dataset into k size-balanced 
parts that can be used either as training or test datasets for simulated ASCAPE 
edge nodes. 

• ModelFactory – a base class enabling core functionalities to define and setup 
a federated TensorFlow neural network models provided by tfnn module. 

• RegModelFactory – a class extending ModelFactory used to create a 
sequence of federated TensorFlow neural networks for regression (one 
network per simulated ASCAPE edge nodes). 

• ClModelFactory – a class extending ModelFactory enabling the creation 
of federated TensorFlow neural networks for n-ary classification. 

• BinClModelFactory – similar to the two previous classes, this class realizes 
the factory for federated TensorFlow neural networks performing binary 
classification.   

• FedModel – a base class defining core functionalities when simulating 
federated model learning. 

• FedIncModel – a class derived from FedModel simulating federated learning 
in the incremental learning mode for an arbitrary number of ASCAPE edge 
nodes. 

• FedConModel – a class derived from FedModel simulating federated learning 
in the semi-concurrent learning mode for an arbitrary number of ASCAPE edge 
nodes. 
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Figure 3 shows a simple simulator based on fedsim module for training a federated 
neural network doing regression for different number of ASCAPE edge nodes (from 
one to four). The federated neural network has ten layers, each having 40 nodes. The 
network is trained from patient data in the ORB-dataset in the incremental learning 
mode for 200 epochs per simulated node and on batches of size 32. The trained 
federated model is then evaluated using existing modules from the ASCAPE edge 
node machine learning services (RAMTFNNRegressor is the in-memory inference 
engine for TensorFlow neural networks performing regression; EvalRegression-
Model provides various metrics for evaluating regression models and here it is used 
to compute MAE – the mean absolute error of the model).  
 
An example showing how to simulate federated learning in the semi-concurrent mode 
is given in Figure 4. Similar to the previous example, one to four ASCAPE edge nodes 
are simulated, but this time a federated neural network for binary classification is 
trained on splits obtained from the BcBase dataset. 

Figure 3. A demonstration of the ASCAPE federated learning simulator module for training a regression model in 
the incremental federated learning mode on the Orebro dataset for different numbers of edge nodes. 
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Figure 4. A demonstration of the ASCAPE federated learning simulator module for training a binary classification 

model in the semi-concurrent federated learning mode on the BcBase dataset for different numbers of edge 
nodes. 

4.3 Training of Local AI Models 

In contrast to federated (global) models, local models are non-collectively learned 
predictive models, trained considering only datasets available at a particular ASCAPE 
edge node. An ASCAPE edge node uses its own local models for making predictions 
instead of the corresponding global models when the global models exhibit a poor 
performance (low accuracy or high error) on training datasets present on that node. In 
this way, ASCAPE predictive components will be able to deliver accurate predictions 
for ASCAPE edge node covering some specific, uncommon and rarely represented 
cohorts of patients.  
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Local models are not restricted to iterative optimization algorithms. Secondly, they can 
be easily retrained in order to avoid potential negative effects of incremental updates, 
such as catastrophic forgetting (the tendency of the model to “forget” previously 
learned trends and relationships when updated on new data batches). 
 
Besides neural networks, we consider the following machine learning algorithms for 
training local models performing classification: 

• SVM: support vector machine classifier 
• NB: Naïve Bayes classifier 
• KNN: K-nearest neighbours’ classifier 
• DT: Decision-tree classifier  
• RF: random forest classifier. 

Support vector machine classifiers are based on the idea of using linear models to 
identify non-linear boundaries of categories. This is achieved by transforming data 
instances into a new higher-dimensional space using a non-linear mapping. Quadratic 
programming algorithms are then employed in the higher-dimensional space to 
determine maximum margin hyperplanes separating instances from different 
categories. The Naive Bayes classification is a probabilistic classification algorithm. 
This algorithm returns the most probable category for a given data instance, where 
category probabilities are computed using conditional probability estimates derived 
from the training dataset under the assumption that features describing data instances 
are conditionally independent. KNN is an instance-based (lazy) classifier: the category 
for a given data instance is determined from categories of the K closest instances from 
the training dataset determined using some distance function (e.g., Euclidean or 
Manhattan distance). In our experiments we have set K to 10 (the same K value is 
also used for KNN regression that is described later). Decision tree classifiers make 
predictions according to decision trees constructed from training dataset by a divide-
and-conquer algorithm guided by some information-theoretic measure 
(e.g., information gain or Gini impurity). The used information-theoretic measure 
indicates the best feature to recursively split the training dataset into parts from which 
subtrees are constructed. A random forest is an ensemble of decision trees learned 
from bootstrapped samples of the training data. The random forest algorithm employs 
so-called feature bagging to determine a random subset of features for learning 
individual decision trees. The category for a given input instance is then the most 
frequent category derived from decision trees in the ensemble. In our experiments we 
have used random forest ensembles containing 10 trees (the same applies also for 
random forest regression). 
For regression problems, local models are trained by one of the following machine 
learning algorithms: 

• LINEAR: linear regression 
• RIDGE: ridge regression 
• LASSO: lasso regression 
• ELASTICN: elastic net regression  
• KRIDGE: kernel ridge regression 
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• SVM: support vector machine regression 
• RF: random forest regression 
• KNN: K-nearest neighbours regression 
• ADAB: AdaBoost regression. 

The linear regression algorithm determines coefficients of a linear model by minimizing 
the residual sum of squares between real values of the outcome variable and 
predictions obtained by the linear approximation. Ridge, Lasso and ElasticNet find a 
linear model by minimizing the residual sum of squares with incorporated 
regularization penalties: Ridge uses the L2 regularization penalty, Lasso uses the L1 
regularization penalty, while ElasticNet uses both L1 and L2 regularization penalties. 
Kernel ridge regression performs ridge regression in a space obtained by a non-linear 
mapping of the training dataset. SVM, RF and KNN are adaptations of the 
corresponding classification algorithms for regression tasks. AdaBoost is a meta-
learning algorithm boosting an arbitrary regression method (decision-tree based 
regressor in our case) towards data instances having high prediction errors. The 
algorithm starts by assigning equal weights to all instances in the training dataset. 
Those weights indicate how hard it is to predict the outcome variable for a particular 
instance, i.e., instances with higher prediction errors have higher weights. Some base 
regression method is employed to form an initial regression model. Instances in the 
training datasets are reweighted according to errors obtained by the trained regression 
model. Then, a new regression model is learned using a loss function that is pondered 
with weights. The two steps are repeated either for a fixed number of iterations or until 
the error of the model becomes acceptable. Predictions by AdaBoost are made 
considering all sequentially trained regression models. As the baseline for evaluating 
above-mentioned regression models we use the so-called DUMMY regression model. 
The DUMMY model always predicts the same value: the mean of the outcome variable 
computed from the training dataset.  
The training of local machine learning models is enabled by the ASCAPE edge node 
machine learning services based on the scikit-learn library. The implementation of 
relevant modules is described in Deliverable D3.1 – Cancer-care predictive analytics 
and decision-making services: proof of concept demonstration.  

4.4 Evaluation Methodology and Metrics 

For the evaluation of models’ performance, we used 10-fold cross validation as 
described in section 3.1. 
 
In order to assess the performance of models from different aspects, we used various 
measures. For the problem of binary classification we used: accuracy ("HH), F1 score 
(I1), precision of the positive class (%&0J*), recall of the positive class (K0J*), 
precision of the negative class (%&0J(), recall of the negative class (K0J(), macro-
averaged precision (%&0J), and macro-averaged recall (K0J). All of the mentioned 
measures are listed below, where L9 stands for true positives, LE for true negatives, 
M9 for false positives, and ME for false negatives. 
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"HH = 	
L9 + LE

L9 + LE + M9 + ME 

I1 =
2L9

2L9 + M9 + ME 

%&0J* =
L9

L9 + M9 

K0J* =
L9

L9 + ME 

%&0J( =
LE

LE + ME 

K0J( =
LE

LE + M9 

%&0J =
%&0J* + %&0J(

2  

K0J =
K0J* + K0J(

2  
 
On the other side, for the evaluation of the regression models we used: mean absolute 
error (N"O), mean squared error (NPO), coefficient of determination (K2), and the 
Person’s correlation coefficient (%H). All the measures are presented below, where E 
is the number of dataset instances, 8$ is the target attribute value of the A-th instance, 
7$ is the predicted value of the target attribute of the A-th instance, 8̅ is the mean of the 
target attribute’s values, and 7R is the mean value of all predicted values for the target 
attribute. 
 

N"O =
∑ |8$ − 7$|+
$,!

E  
 

NPO =
∑ (8$ − 7$)"+
$,!

E  
 

PP-.- =V(8$ − 8̅)"
+

$,!
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+
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PP-.-

 

 
 

%H =
∑ (8$ − 8̅)(7$ − 7R)+
$,!

W∑ (8$ − 8̅)"+
$,! W∑ (7$ − 7R)"+

$,!
 

 
In order to evaluate performance of different missing values imputation algorithms, we 
trained regressors on datasets obtained by both the algorithms, and then we 
compared their performance. Namely, we wanted to verify whether some missing 
values imputation algorithm helps to achieve better performance of regressors. 
 
The influence of differential privacy techniques on model’s performance is evaluated 
by training models on different data: 1) on original dataset, 2) on datasets that are 
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generated with different values of ! DP parameter. The comparison of all these models 
suggests how DP influences predictions. 
 
Similarly, performance of homomorphic encrypted models is compared with 
performance of models without homomorphic encryption.  

4.5 Evaluation Results  

At the current stage of project realization, we do not have compatible datasets 
(datasets containing the same features) coming from different data sources (different 
clinics corresponding to different ASCAPE edge nodes) to train and evaluate real 
federated (global) models. Thus, the focus of this deliverable, from the ASCAPE edge 
node perspective, is on the training and evaluation of local models and simulated 
federated models. Since simulated federated models are trained and evaluated on the 
same amount of data as local models, it is natural to expect that locally-trained models 
(local models) will exhibit better performance than decentralized models (simulated 
federated models).  
 
4.5.1 Evaluation of locally-trained models 

The evaluation of locally-trained binary classification models on the BcBase datasets 
is summarized in Table 12 to Table 15. Each table shows accuracy ("HH), F1 score, 
macro-averaged precision (%&0J), macro-averaged recall (K0J), precision and recall of 
the positive class (%&0J* and K0J*) and precision and recall of negative class (%&0J( 
and K0J() for the corresponding BcBase dataset. To the positive class belongs 
patients experiencing anxiety, depression, insomnia and pain after cancer diagnosis, 
respectively per dataset, while patients without those symptoms are in the negative 
class (again, respectively per dataset). The evaluation was performed on a PC with 
Intel® Core™ i5-2320 CPU @ 3.00GHz × 4, 12 GB RAM memory, and the Ubuntu 
operating system. 
 
SVM has the highest accuracy on three out of four BcBase datasets: BcBase-Anxiety, 
BcBase-Depression and BcBase-Pain. However, it can be observed that this 
classification model on those datasets has zero precision and zero recall for the 
positive class. In other words, SVM totally fails for patients experiencing anxiety, 
depression and pain after diagnosis since it dominantly predicts the negative class (no 
negative QoL related symptoms). Thus, the highest accuracy of SVM for those three 
datasets is the consequence of the class imbalance in the BcBase datasets 
(approximately 70% of the patients belong to the negative class and 30% to the 
positive class). Therefore, accuracy is a biased measure towards the negative class 
and it should not be used to compare different classification models. F1 score in the 
case of the BcBase datasets is more adequate measure to compare different models 
since it is harmonic mean of macro-averaged precision and macro-averaged recall 
(i.e., it takes into account precision and recall of both classes). Not surprisingly, the 
SVM exhibits the lowest F1 score on those datasets where it has the highest accuracy. 
KNN has the lowest F1 score on BcBase-Insomnia.   
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NB has the highest F1 score on three out of four BcBase datasets (anxiety, depression 
and insomnia). The best model on the fourth BcBase dataset (pain) is DT, but the F1 
score of NB on this dataset is very close to the F1 score of DT. Therefore, it can be 
concluded that NB is the best performing locally trained model for the BcBase 
datasets.  For all models on all BcBase datasets we have, we identified that they better 
perform for the negative class than for the positive class.   
 

Table 12. Evaluation of binary classification models on BcBase-Anxiety. 

 XYY Z[ \]^_ `^_ \]^_* `^_* \]^_( `^_( 
RF 0.673 0.484 0.535 0.514 0.366 0.112 0.704 0.916 
SVM 0.698 0.411 0.349 0.500 0.000 0.000 0.698 1.000 
NB 0.629 0.552 0.553 0.552 0.379 0.354 0.728 0.749 
KNN 0.682 0.458 0.529 0.507 0.357 0.066 0.701 0.949 
DT 0.583 0.511 0.511 0.511 0.317 0.329 0.705 0.693 

 
Table 13. Evaluation of binary classification models on BcBase-Depression. 

 XYY Z[ \]^_ `^_ \]^_* `^_* \]^_( `^_( 
RF 0.677 0.473 0.524 0.509 0.342 0.093 0.706 0.924 
SVM 0.702 0.413 0.351 0.500 0.000 0.000 0.702 1.000 
NB 0.566 0.534 0.543 0.551 0.345 0.514 0.741 0.588 
KNN 0.688 0.462 0.536 0.509 0.366 0.067 0.706 0.951 
DT 0.589 0.515 0.515 0.515 0.318 0.333 0.712 0.697 

 
Table 14. Evaluation of binary classification models on BcBase-Insomnia. 

 XYY Z[ \]^_ `^_ \]^_* `^_* \]^_( `^_( 
RF 0.538 0.526 0.535 0.532 0.526 0.394 0.544 0.671 
SVM 0.541 0.533 0.539 0.537 0.529 0.427 0.549 0.647 
NB 0.555 0.554 0.555 0.554 0.539 0.529 0.570 0.580 
KNN 0.521 0.502 0.516 0.514 0.503 0.343 0.529 0.686 
DT 0.516 0.515 0.515 0.515 0.497 0.500 0.534 0.531 

 
Table 15. Evaluation of binary classification models on BcBase-Pain. 

 XYY Z[ \]^_ `^_ \]^_* `^_* \]^_( `^_( 
RF 0.698 0.486 0.554 0.518 0.386 0.098 0.722 0.937 
SVM 0.714 0.417 0.357 0.500 0.000 0.000 0.714 1.000 
NB 0.530 0.517 0.553 0.564 0.333 0.643 0.773 0.484 
KNN 0.699 0.457 0.528 0.506 0.338 0.055 0.717 0.957 
DT 0.604 0.522 0.522 0.522 0.316 0.333 0.727 0.712 

 
The results of the evaluation of locally-trained regression models on the ORB datasets 
are shown in Table 16 to Table 21 (one table per dataset, the best performing models 
are bolded). Each table presents the mean absolute error (MAE), the mean squared 
error (MSE), the coefficient of determination (R2) and the Person’s correlation 
coefficient (PC) for the examined models, including also the DUMMY model as the 
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baseline. The Person’s correlation coefficient between real target values and values 
predicted by DUMMY is undefined (NaN) since DUMMY always predicts the same 
value. The best model (the lowest MAE and MSE, the highest R2 and PC) for ORB-
30-36 is RF. For all others ORB datasets, the best performing model is LASSO. KNN 
is the worst performing model on all ORB datasets (predictions made by this model 
are even more erroneous than predictions made by DUMMY). Excluding KNN, all 
others considered models exhibit smaller prediction errors (and, consequently, higher 
correlations with real values) compared to DUMMY except in one case: DUMMY is 
better than linear regression on ORB-30-120. The prediction errors of the best 
performing model are in the range [4.84, 6.47], which is an acceptable level of 
prediction errors taking into account that the target variable (the LISAT QoL index) is 
in the range [11, 66].   
 
 

Table 16. Evaluation of regression models on ORB-30-36. 

 aXb acb `d \Y 
DUMMY 6.541 68.579 -0.001 NaN 
LINEAR 5.311 49.914 0.273 0.559 
RIDGE 5.100 44.150 0.358 0.604 
LASSO 5.089 45.001 0.346 0.592 
ELASTICN 5.126 46.245 0.328 0.581 
KRIDGE 5.147 45.193 0.343 0.594 
SVM 6.519 69.469 -0.014 0.015 
RF 5.051 43.872 0.361 0.605 
KNN 6.720 71.616 -0.044 0.034 
ADAB 5.376 47.606 0.306 0.569 

 
 

Table 17. Evaluation of regression models on ORB-30-60. 

 aXb acb `d \Y 
DUMMY 6.890 78.402 -0.001 NaN 
LINEAR 6.129 71.126 0.086 0.429 
RIDGE 5.925 66.454 0.147 0.464 
LASSO 5.886 62.182 0.205 0.463 
ELASTICN 5.913 62.530 0.201 0.460 
KRIDGE 5.958 67.246 0.137 0.459 
SVM 6.773 80.572 -0.028 0.039 
RF 6.015 62.576 0.202 0.459 
KNN 6.968 80.045 -0.023 0.076 
ADAB 6.542 67.651 0.135 0.436 
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Table 18. Evaluation of regression models on ORB-30-120. 

 aXb acb `d \Y 
DUMMY 6.909 81.277 -0.004 NaN 
LINEAR 7.003 88.397 -0.113 0.287 
RIDGE 6.652 76.523 0.054 0.319 
LASSO 6.478 72.928 0.100 0.322 
ELASTICN 6.504 73.370 0.095 0.318 
KRIDGE 6.750 78.270 0.032 0.310 
SVM 6.871 82.172 -0.015 0.044 
RF 6.685 76.875 0.047 0.277 
KNN 7.133 84.482 -0.045 0.061 
ADAB 6.934 80.517 0.000 0.246 

 

Table 19. Evaluation of regression models on ORB-54-60. 

 aXb acb `d \Y 
DUMMY 6.890 78.402 -0.001 NaN 
LINEAR 5.238 57.528 0.264 0.620 
RIDGE 5.070 54.302 0.306 0.638 
LASSO 4.840 45.122 0.425 0.659 
ELASTICN 4.859 45.216 0.425 0.660 
KRIDGE 5.115 56.217 0.282 0.633 
SVM 6.772 80.592 -0.029 0.033 
RF 5.009 46.034 0.413 0.649 
KNN 6.906 79.092 -0.013 0.113 
ADAB 5.702 52.494 0.330 0.620 

 
 

Table 20. Evaluation of regression models on ORB-54-120. 

 aXb acb `d \Y 
DUMMY 6.909 81.277 -0.004 NaN 
LINEAR 6.899 87.935 -0.107 0.319 
RIDGE 6.356 72.210 0.110 0.389 
LASSO 6.180 68.472 0.157 0.405 
ELASTICN 6.216 68.754 0.153 0.405 
KRIDGE 6.492 75.187 0.073 0.370 
SVM 6.859 81.953 -0.013 0.059 
RF 6.357 69.279 0.142 0.405 
KNN 7.128 84.079 -0.043 0.070 
ADAB 6.612 74.280 0.075 0.325 
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Table 21. Evaluation of regression models on ORB-108-120. 

 aXb acb `d \Y 
DUMMY 6.909 81.277 -0.004 NaN 
LINEAR 6.524 74.276 0.088 0.466 
RIDGE 5.977 64.100 0.215 0.517 
LASSO 5.437 55.220 0.324 0.574 
ELASTICN 5.448 55.277 0.323 0.576 
KRIDGE 6.155 67.746 0.169 0.496 
SVM 6.875 82.072 -0.014 0.067 
RF 5.635 57.028 0.299 0.556 
KNN 7.033 82.971 -0.025 0.115 
ADAB 5.777 57.502 0.294 0.551 

 

Since LASSO is the best performing model on the ORB datasets, we have computed 
how much it is better than DUMMY. The results are shown in Figure 5. It can be 
observed that LASSO improvements over DUMMY are significant for short term QoL 
predictions (30-36, 54-60, 108-120) ranging from 20% to 30% in the reduction of MAE 
scores. For medium term QoL predictions (30-60, 54-120) the improvements are 
between 10% and 15%. As expected, the lowest improvement is for long term QoL 
predictions on ORB-30-120 where the reduction of MAE scores is slightly higher 
than 5%. 

 
Figure 5. Lasso improvement over Dummy on ORB datasets in percentages reflecting the reduction of MAE 

scores. 

We also examined how the missing value inference algorithm affects the accuracy of 
examined classification and regression models. The comparison of F1 scores for 
binary classifiers trained after missing value inference performed by iterative and 
simple missing value imputers is given in Table 22 (p. 36). As depicted, differences in 
F1 scores are almost absent. We also see a similar result for regression models. 
Figure 6 shows MAE scores for the best performing model on ORB datasets (LASSO) 
and it can be seen that differences between the iterative and simple imputer are 
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insignificant. Therefore, we conclude that missing value inference for BcBase and 
ORB datasets by simple methods can be as effective as missing value inference done 
by regression methods.  
 
Table 22. Comparison of F1 scores of binary classifiers trained on BcBase datasets obtained after missing value 

inference by the iterative (Iter) and simple (Sim) missing value imputer. 

 Anxiety Depression Insomnia Pain 
 Iter Sim Iter Sim Iter Sim Iter Sim 
RF 0.484 0.488 0.473 0.472 0.526 0.517 0.486 0.484 
SVM 0.411 0.411 0.413 0.413 0.533 0.533 0.417 0.417 
NB 0.552 0.553 0.534 0.529 0.554 0.552 0.517 0.520 
KNN 0.458 0.458 0.462 0.459 0.502 0.501 0.457 0.455 
DT 0.511 0.529 0.515 0.518 0.515 0.519 0.522 0.524 

 

 
Figure 6. Comparison of MAE for Lasso regressors (the best performing model on ORB datasets) trained on 

ORB datasets obtained after missing value inference by the iterative and simple missing value imputer. 

4.5.2 Evaluation of simulated federated models 

In experiments with simulated federated models, we have used one neural network 
architecture for the BcBase datasets and second for the ORB dataset. A preliminary 
investigation, in which we have varied the number of hidden neural network layers 
between 1 and 10 and the batch size in the set {16, 64, 128, 256, 512}, showed that 
swallow neural networks (a small number of hidden layers) trained with a large batch 
size are more suitable for the BcBase datasets, while deeper neural networks (a larger 
number of hidden layers) trained with a small batch size result with better predictive 
models for the ORB datasets. We have simulated from 2 to 4 ASCAPE edge nodes 
training models in both incremental and semi-concurrent federated learning mode.  
Performance metrics for simulated federated models were obtained in the same way 
as for locally-trained local models (by the 10-fold cross validation procedure). The 
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training and evaluation process was conducted on a PC with Intel® Core™ i5-2320 
CPU @ 3.00GHz × 4, 12 GB RAM memory, and the Ubuntu operating system. 
 
The architecture of examined TensorFlow-based neural networks for federated binary 
classification models on the BcBase datasets consists of 4 hidden layers each having 
20 nodes. Neural networks were trained in 200 epochs per simulated ASCAPE edge 
node with batch size equal to 512. The Adam algorithm [4] (a stochastic gradient 
descent method based on adaptive estimation of first-order and second-order 
moments) was used as the optimizer of neural network weights and biases with the 
learning rate set to 0.001. Due to the presence of the class imbalance in the BcBase 
datasets, we have incorporated class weights in the neural network training process. 
The weight of class H (H is either the positive or the negative class) was set to 
(1	/	|H|)(f	/	2), where |H| is the total frequency of class H in the training dataset (or a 
part of the dataset assigned to a simulated ASCAPE edge node) and the scaling by 
f	/	2 (f is the total number of instances in the training dataset) was introduced to keep 
the value of the loss function at the same magnitude as without weighting. The 
comparison of F1 scores of local and simulated federated binary classification models 
on the BcBase datasets is presented in Table 23. TFNN denotes a local TensorFlow-
based neural network binary classification model, while INC-k and CON-k are 
simulated federated TensorFlow-based neural network binary classification models 
trained in the incremental (INC) and semi-concurrent (CON) learning mode for k 
simulated edge nodes. 
 
For the BcBase-Anxiety, Depression and Insomnia datasets, we have identified that 
simulated federated models are significantly better than the worst performing local 
model (SVM and KNN depending on the dataset). The F1 scores of simulated 
federated models are close to F1 scores of NB which is the best performing local 
model for those three BcBase datasets. On the other hand, simulated federated 
models trained on the BcBase-Pain dataset have higher F1 scores than the F1 score 
of the best performing local model on that dataset (DT). It is also important to 
emphasize that there are no significant differences in F1 scores of incremental models 
and semi-concurrent models. Additionally, the performance of federated models does 
not tend to significantly drop with the number of simulated ASCAPE edge nodes.                  
 

Table 23. F1 scores of local and simulated federated binary classification models on the BcBase datasets. 

 Anxiety Depression Insomnia Pain 
Best local 0.552 0.534 0.554 0.522 
Worst local 0.411 0.413 0.502 0.457 
TFNN 0.438 0.530 0.540 0.542 
INC-2 0.536 0.512 0.546 0.542 
INC-3 0.542 0.507 0.529 0.542 
INC-4 0.539 0.515 0.538 0.532 
CON-2 0.522 0.504 0.542 0.548 
CON-3 0.512 0.519 0.550 0.534 
CON-4 0.530 0.509 0.542 0.545 
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For simulated federated regression models trained on the ORB dataset, we have used 
the neural network architecture with 10 hidden layers each with 40 neurons. Their 
training was performed in 200 epochs per simulated ASCAPE edge node. The batch 
size was equal to 32. The optimization algorithm was Adam with the same learning 
rate as for classification models. The obtained MAE scores are given in Table 24. For 
all six datasets, the best local model (LASSO) has lower prediction errors than 
simulated federated models. There are no large differences between simulated 
federated models trained in different federated learning modes. In contrast to 
simulated federated models trained on the BcBase datasets, here we can observe a 
tendency of increasing errors with the number of simulated ASCAPE edge nodes. 
Simulated federated models are better than the DUMMY baseline for ORB-30-36, 
ORB-30-60, ORB-54-60 and ORB-108-120, but worse than DUMMY for ORB-30-120 
and ORB-54-120. This result implies that different neural network architectures should 
be employed for short term and long term QoL predictions. Therefore, our subsequent 
work will be to examine a wider range of neural network architectures for federated 
regression and determine architectures providing satisfactory results long-term QoL 
predictions. 
 
Table 24. Comparison of MAE scores of local and simulated federated regression models on the ORB datasets. 

 30-36 30-60 30-120 54-60 54-120 108-120 
DUMMY 6.541 6.890 6.909 6.890 6.909 6.909 
LASSO 5.089 5.886 6.478 4.840 6.180 5.437 
TFNN 5.783 6.572 7.323 5.811 7.206 6.562 
INC-2 6.012 6.775 7.488 5.931 7.188 6.625 
INC-3 6.472 6.751 7.226 5.867 7.169 6.430 
INC-4 6.595 7.042 7.463 6.220 7.206 6.484 
CON-2 5.881 6.705 7.444 5.904 7.193 6.463 
CON-3 6.404 6.826 7.427 5.986 7.098 6.327 
CON-4 6.534 6.883 7.538 6.269 7.221 6.652 

4.5.3 Evaluation of HE-based models 

The evaluation of HE-based model is presented in the tables below. For comparison 
and validation, all AI models were trained on plaintext data as well, according to the 
10-fold cross-validation. Hence, the outputs of the plaintext models are compared to 
the results of the encrypted models after decryption. Next, the performance of the 
unencrypted and encrypted models is compared.  
For the classification problem on the BcBase dataset, the metrics’ values are listed 
inTable 25 to Table 28. The predictions obtained with the unencrypted models and the 
ones obtained with the encrypted models are identical.  
 

Table 25. Evaluation of binary classification models on BcBase-Anxiety 

 XYY Z[ \]^_ `^_ \]^_* `^_* \]^_( `^_( 
Plaintext 0.653 0.223 0.514 0.525 0.865 0.705 0.164 0.346 
Encrypted 0.653 0.223 0.514 0.525 0.865 0.705 0.164 0.346 
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Table 26. Evaluation of binary classification models on BcBase-Depression 

 XYY Z[ \]^_ `^_ \]^_* `^_* \]^_( `^_( 
Plaintext 0.642 0.255 0.517 0.524 0.828 0.711 0.206 0.337 
Encrypted 0.642 0.255 0.517 0.524 0.828 0.711 0.206 0.337 

 
Table 27. Evaluation of binary classification models on BcBase-Insomnia 

 XYY Z[ \]^_ `^_ \]^_* `^_* \]^_( `^_( 
Plaintext 0.556 0.510 0.553 0.554 0.624 0.565 0.481 0.543 
Encrypted 0.556 0.510 0.553 0.554 0.624 0.565 0.481 0.543 

 
Table 28. Evaluation of binary classification models on BcBase-Pain 

 XYY Z[ \]^_ `^_ \]^_* `^_* \]^_( `^_( 
Plaintext 0.699 0.170 0.522 0.564 0.936 0.724 0.107 0.405 
Encrypted 0.699 0.170 0.522 0.564 0.936 0.724 0.107 0.405 

 
 
For the regression problem, the metrics’ values are listed in Table 29 to Table 34, 
followed by the Bland-Altman plot and the Scatter plot for each Orebro dataset in 
Figure 7 to Error! Reference source not found.. In scatter plots the predicted 
response of the regression model is plotted against the actual, true response. A perfect 
regression model has a predicted response equal to the true response, so all the 
points lie on a diagonal line. Usually, a good model has points scattered roughly 
symmetrically around the diagonal line. Bland-Altman plot is a scatter plot in which the 
y axis shows the difference between predicted and ground truth and the x axis 
represents the average of these measures. The predictions obtained with the 
unencrypted models and the ones obtained with the encrypted models are identical. 
For this reason, only one pair of plots for each Orebro dataset is illustrated below.  
 

Table 29. Evaluation of regression models on ORB-30-36 

 aXb acb `d \Y 
Plaintext 6.811 75.033 -0.094 0.254 
Encrypted 6.811 75.033 -0.094 0.254 

 
Table 30. Evaluation of regression models on ORB-30-60 

 aXb acb `d \Y 
Plaintext 7.500 93.420 -0.191 0.170 
Encrypted 7.500 93.420 -0.191 0.170 

 
Table 31. Evaluation of regression models on ORB-30-120 

 aXb acb `d \Y 
Plaintext 7.694 107.079 -0.318 0.120 
Encrypted 7.694 107.079 -0.318 0.120 
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Table 32. Evaluation of regression models on ORB-54-60 

 aXb acb `d \Y 
Plaintext 7.145 87.820 -0.120 0.297 
Encrypted 7.145 87.820 -0.120 0.297 

 
Table 33. Evaluation of regression models on ORB-54-120 

 aXb acb `d \Y 
Plaintext 7.779 100.775 -0.240 0.186 
Encrypted 7.779 100.775 -0.240 0.186 

 
Table 34. Evaluation of regression models on ORB-108-120 

 aXb acb `d \Y 
Plaintext 7.424 88.873 -0.094 0.306 
Encrypted 7.424 88.873 -0.094 0.306 

 
  

Figure 7. ORB-30-36 plots 

Figure 8. ORB-30-60 plots 
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Figure 9. ORB-30-120 plots 

Figure 10. ORB-54-60 plots 

Figure 11. ORB-54-120 plots 
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To investigate the suitability of the MORE encryption scheme in real Machine Learning 
applications, training and testing are reported. For our experiments, a system with 
Intel(R) Core (TM) i7-4800MQ CPU @ 2.70GHZ has been used. Considering that the 
BcBase datasets are similar, only one use-case (BcBase-Anxiety) is listed in Table 
35. For the same reason, we only report the time for the ORB-30-36 and ORB-108-
120 datasets. The time reported in the first 2 columns of the table is the mean of the 
values measured for each fold of the datasets. The other 2 columns contain the mean 
testing time of the 10 folds for each dataset. On average, the encrypted model took 
40 times longer to train and 35 times longer to test than the unencrypted model.  

 
Table 35. Training and Testing time for the unencrypted and the encrypted model 

Dataset Training time 
on plaintext 

data 
(s) 

Training time 
on encrypted 

data 
(s) 

Testing time 
on plaintext 

data 
(s) 

Testing time 
on encrypted 

data 
(s) 

BcBase-Anxiety 448.803 18525.69 0.049 1.764 
ORB-30–36 67.638 2675.353 0.018 0.622 
ORB-108–120 31.921 1295.513 0.008 0.282 

 

4.6 Summary of Model Training Evaluation 

In this deliverable we have examined five classification and ten regression machine 
learning models on BcBase and Orebro retrospective datasets, including also 
simulated federated machine learning models based on TensorFlow neural networks.  
 
The evaluation of binary classification models on BcBase datasets showed that trained 
models exhibit relatively high accuracies, but moderate F1 scores (slightly higher than 
0.5). The Naive Bayes classifier showed to be the best classification technique for 
BcBase datasets. The analysis of obtained precision and recall scores per classes 
revealed that the examined models exhibit satisfactory results for the negative class 
(patients that do not experience anxiety, depression, insomnia and/or pain after cancer 
diagnosis), while predictions for the positive class (patients experiencing negative QoL 

Figure 12. ORB-108-120 plots 



  

 

 Project No 875351 (ASCAPE) 

 D2.4 – ML/DL Training and  Evaluation Report-V1 

 Date: 26.02.2021 

 Dissemination Level: PU  

 

Page 43 of 58 
 

symptoms) are more error prone. Thus, in our future work we will examine several 
bootstrapping and data resampling techniques in order to see whether BcBase binary 
classification models can be improved towards more accurate predictions for the 
positive class of patients. The analysis of simulated federated models trained on 
BcBase datasets showed that their performance is comparable to the performance of 
locally trained models or even better (federated models on the BcBase-Pain dataset 
have higher F1 scores than the best locally trained binary classification model). 
  
The analysis of regression models on the Orebro retrospective datasets revealed that 
the Lasso regression model is the best performing model among the examined 
regression models. This model significantly outperforms the baseline Dummy 
regression model, giving the reduction in prediction errors ranging from 20-30% for 
short term QoL predictions, 10-15% for medium term QoL predictions and 5% for long 
term QoL predictions. The mean absolute error of Lasso ranges from 4.84 to 6.47, 
which is an acceptable level of prediction errors since the target variable (the LISAT 
QoL index) ranges from 11 to 66. The analysis of simulated federated models trained 
on Orebro datasets showed that their performance is comparable to locally trained 
regression models for short term QoL predictions, but not for long term QoL 
predictions. Thus, in our future work we will examine different neural network 
architectures for long term QoL predictions. 
  
The impact of missing value inference to the performance of classification and 
regression models was also examined. The obtained results indicate that models 
trained after the simple missing value imputer have F1 scores similar to models trained 
after the iterative missing value imputer. This result suggests that missing value 
inference done by simple and time-efficient methods can be as effective as missing 
value inference done by more sophisticated ML-based methods. 
 
Compared to the TensorFlow models the HE-based models obtained weaker results. 
This is a consequence of the fact that the C++ HE AI library can operate, for the 
moment, only with the SGD optimizer. This optimizer is not suitable for complex AI 
models. Therefore, in future work, we plan to extent the machine learning library and 
enable the use of advanced optimizer for HE models training and improved neural 
network architectures. Further experimentation with the HE models will be considered 
to find better deep learning-based models.  
In addition to improving the existing models trained on retrospective datasets, our 
future work will be mainly focused on the training and evaluation of machine learning 
models on prospective datasets as they become available to technical AI partners. For 
both retrospective and prospective datasets, we will also examine machine learning 
models trained after outlier detection and elimination and models trained after feature 
selection.  
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5 Explainability Methods and Evaluation 

This section reports on the methods experimented with on the models obtained from 
retrospective datasets to generate explanations. First, different Feature Attribution 
frameworks are presented in section 5.1 and training of interpretable surrogate models 
is described in section 5.2. Their evaluations are reported in section 5.3. 

5.1 Frameworks for Feature Attribution 

There are various ways to explain the output of machine learning models. Generally, 
the objective of an explanation is to provide information about the inference of a 
prediction. For very complex models, the inner processes that lead to a certain 
prediction cannot be easily delivered in a form that humans can comprehend. Usually, 
only the inputs and outputs of an AI model are directly related to real world entities 
such as physical measurements or human-made definitions and can therefore be 
easily understood by the user of the ASCAPE platform.  
 
Feature Attribution describes the amount each input feature contributes to the 
prediction of a model. Hereby a scalar real value is assigned to each input feature. A 
positive number denotes that the feature increased the output, and vice versa. The 
higher the feature attribution is, the stronger is the influence on the output. The exact 
scaling of feature attribution value depends on the method used. 
 
Various techniques to calculate feature attribution have been proposed in the last 
years. The increasing popularity of neural networks accelerated the development of 
feature attribution techniques to overcome their drawback of being a black-box 
unpredictable behaviour. 
 
The inspection-module of the SciKit-learn package provides a function for permutation 
importance [1]. However, this method is rather outdated and can only determine the 
feature attribution for a whole batch or dataset, but not for each sample individually. 
 
Captum [5] is an explainability framework developed for the deep learning library 
PyTorch. It provides a set of classes for various modern feature attribution methods 
and techniques to examine individual layers of a neural network. The Feature 
Attribution methods are Integrated Gradients [6], Gradient SHAP [7], DeepLIFT [8], 
DeepLIFT SHAP [7], Saliency [9], Input X Gradient [9], Guided Backpropagation and 
Deconvolution [10], Guided GradCAM [11], Feature Permutation [12], Occlusion [13], 
Shapley Value Sampling [7], Lime [14] and KernelSHAP [7]. Although providing a 
broad set of state-of-the-art methods, Captum is heavily tailored to being used with 
PyTorch, making it difficult to being used with non-deep learning methods. 
 
ELI5 [15] is a class library tailored for use with SciKit-learn, and various gradient 
boosting libraries like XGBoost and Keras. It has implementations of some more 
popular methods like LIME [14]and more basic techniques like permutation 
importance. The format in which explanations are provided are separated by the 
calculations. ELI5 provides functions to explain model weights and predictions. The 



  

 

 Project No 875351 (ASCAPE) 

 D2.4 – ML/DL Training and  Evaluation Report-V1 

 Date: 26.02.2021 

 Dissemination Level: PU  

 

Page 45 of 58 
 

features of ELI5 are a bit behind of those of Captum and it does not seem to be actively 
developed anymore. 
 
Based on the Paper “A Unified Approach to Interpreting Model Predictions” [7] by S. 
A. Lundberg and Su-In Lee, a Python explainability framework called SHAP 
maintained by Lundberg is publicly available. Beyond the basic SHAP implementation 
from their paper it utilises multiple other state-of-the-art concepts like Integrated 
Gradients [6], (Linear-)LIFT and DeepLIFT [8] mainly to accelerate the computation of 
explanations. 
 
The underlying concept of SHAP originates from the game-theoretic concept of 
Shapley values developed by Lloyd S. Shapley [16]. They mathematically describe 
the influence on the result of a process for each entry in a set of entities E by evaluating 
the processes’ output for all possible subsets of E. 
 
The calculation of Shapley values has exponential complexity, which is why SHAP has 
implementations which make use of the internal structure of the model which reduces 
the complexity. If the model is not compatible with any of the optimizations, Kernel-
Shap can be used, which efficiently approximates the Shapley values for any black-

box model. Since all modules of SHAP calculate or approximate the same 
mathematically defined Shapley values for feature attribution, they can be used 
interchangeably. For ASCAPE, we will therefore integrate SHAP to provide 
explanations for our model predictions. 

5.2 Surrogate Models 

Since most machine learning models are very complex, have a large parameter space 
and are therefore not interpretable by design, ASCAPE will provide surrogate models 

Figure 13. Bar plot showing the feature attribution of a single input sample. 
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along with each prediction model (called from here on regular model). A surrogate 
model is a model trained on training data labelled by the outputs of the regular model 
but is interpretable by design. This way it gets optimized producing similar outputs as 
the regular model but can easily be examined to provide human-readable rulesets 
explaining the output. 
In ASCAPE, Linear Regression and Decision Trees are used as surrogate trees. The 
coefficients of a Linear Regressor provide correlations between each input feature and 
the models’ output while treating the inputs feature as stochastically independent. 
Decision Trees are nonlinear models and generate clear “if … then …"-rules during 
training. Given a data sample, the decision path can be calculated and visualized as 
graphic or text-based showing which decision boundaries were used to calculate the 
surrogates’ output. The decision trees can also be visualised and function as 
interpretable generalization of the regular models. An example of a visualization is 
shown in Figure 14 on p.47. A text-based decision path for a prediction explained with 
the surrogate decision tree is shown in Figure 15 on p. 48. For each decision, the 
inputs value of one variable is checked. If the value is higher or lower than the decision 
boundary, the next node is checked. (For a value higher than the decision boundary, 
the right node is used, otherwise the left node is used). A node without subsequent 
nodes is called a leaf and its value defines the surrogates’ output. In the example 
shown, the decision tree applied the following rule for the input sample:  

“If the QoL at baseline is between 52.2723 and 56.982 and the value for erectile 
function in month 24 after the diagnosis is below 0.0097, then the expected QoL at 

month 36 is estimated to be 50.572.” 
To create a surrogate model from a regular model, the input data of a training dataset 
is needed. Theoretically, this dataset must not be the original dataset the regular 
model was trained on, but it is desirable to ensure the outputs of the surrogate and 
regular model are as similar as possible. If the regular model is a local model, the 
surrogate training is very simple. The training dataset without it’s labels gets passed 
into the regular model and the outputs are used as labels for the surrogate training 
dataset. With this dataset, a linear regression model and a decision tree get trained 
and are saved along the regular model. If the Edge Node has multiple local models, 
this process must be repeated for each model individually. 
Global models were not or only partly trained with the edge nodes’ own dataset. The 
training datasets from other edge nodes cannot be transferred because of privacy 
concerns. Therefore, the surrogate model must be trained in a privacy-preserving 
federated learning procedure similar to the global model. 
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Figure 14. Visualization of a surrogate decision tree based on a linear regressor trained on the ORB-30-36 
dataset 
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For Linear Regression, various methods have been proposed to combine their weights 

or train them concurrently over gradient descent based on the mean squared error 

[17] For decision trees, federated learning was mainly explored with random forests 

and gradient boosted trees.  

5.3 Evaluation methodology and Results 

We evaluated various state of the art methods and frameworks for feature attribution 

and put focus on a self-explanatory output with a clear mathematical definition. SHAP 

satisfies these conditions. Evaluating feature attribution methods cannot be done 

mathematically, since there is no definition of what a correct explanation is. The 

authors of SHAP conducted an experiment where humans gave feature impact 

estimations for a simple model predicting a sickness score for three symptoms. They 

found SHAP being particularly consistent with what a person understanding a model 

would give as estimation for feature attribution [7]. 

 

The performance of surrogate models is critical to use them as a reliable method. 

Since surrogate models are optimized to predict the outputs of the target model rather 

than predicting the distribution of the training dataset, they must fulfil two criteria at 

once. First, their outputs must be close to those of the target model in order to provide 

explanations for its predictions. Secondly, it must still have a good performance on the 

original evaluation dataset. This performance can usually only be as good as the 

performance of the target model. 

 

For the evaluation of the surrogate models we use the models trained and evaluated 

in section 4 as target models. For each dataset and each target model, we trained a 

linear regression surrogate model and a decision tree surrogate model. For their 

evaluation, we used two types of ground truths: For the first evaluation, the outputs of 

the target model were used as ground truth. For the second evaluation, the actual 

ground truth of the original retrospective dataset was used (shown in the results with 

“dataset”). This way, we could examine if the surrogate models were still able to predict 

the actual QoL scores while also emulating the target model’s predictions. For both 

evaluations, a dedicated evaluation dataset was used that was not part of the training 

dataset. For classification tasks, we used accuracy as metric (1 is best, 0 is worst), for 

regression tasks we used the R2-score (1 is best, 0 is random guessing, below 0 is 

worse than random guessing). 

 

Table 36 to Table 39 below present the evaluation results of all surrogate models on 

all datasets. We observed that surrogate training is successful in most cases while 

Figure 15. Example of a text-based description of a decision path extracted from the decision tree in Figure 14.  

decision node 0   : QoL baseline (with lisat) = 54.0909) > 49.463 

decision node 10 : QoL baseline (with lisat) = 54.0909) <= 56.9823 

decision node 11 : Erectile function 24m = -0.1227) <= 0.0097 

decision node 12 : QoL baseline (with lisat) = 54.0909) > 52.2723 

surrogate tree output is 50.5720, actual model output is 49.9321 
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also having accuracies similar to the target models on the original evaluation dataset. 

Surrogate models trained on linear models seem to be especially consistent in 

maintaining good performance on both emulating the target models output as well as 

predicting the actual model. 

 

 
Table 36. Evaluation metrics for surrogate decision trees using the BcBase datasets 

  BcBase-Anxiety BcBase-Depression BcBase-Insomnia BcBase-Pain 

Su
rr

og
at

e 

DT 0.72 0.72 0.58 0.73 
KNN 0.95 0.96 0.72 0.96 
NB 0.91 0.87 0.86 0.87 
RF 0.91 0.93 0.69 0.94 
TFNN 0.88 0.95 0.88 0.84 
SVM 1.00 1.00 1.00 1.00 

D
at

as
et

 

DT 0.67 0.68 0.51 0.70 
KNN 0.70 0.70 0.55 0.71 
NB 0.63 0.59 0.55 0.51 
RF 0.70 0.70 0.55 0.71 
TFNN 0.53 0.67 0.56 0.25 
SVM 0.70 0.70 0.54 0.71 

 

 

 
Table 37. Evaluation metrics for surrogate logistic regression using the BcBase datasets 

  BcBase-Anxiety BcBase-Depression BcBase-Insomnia BcBase-Pain 

Su
rr

og
at

e 

DT 0.33 0.68 0.53 0.71 
KNN 0.94 0.95 0.67 0.94 
NB 0.66 0.53 0.60 0.62 
RF 0.90 0.91 0.62 0.92 
TFNN 0.66 0.82 0.68 0.47 
SVM 1.00 1.00 0.84 1.00 

D
at

as
et

 

DT 0.30 0.70 0.52 0.71 
KNN 0.70 0.70 0.52 0.71 
NB 0.53 0.44 0.53 0.51 
RF 0.70 0.70 0.52 0.71 
TFNN 0.43 0.69 0.53 0.65 
SVM 0.70 0.70 0.54 0.71 
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Table 38. Evaluation metrics for surrogate decision trees using the ORB datasets. 
  ORB-30-36 ORB-30-60 ORB-30-120 ORB-54-60 ORB-54-120 ORB-108-120 

Su
rr

og
at

e  

AdaB 0.61 0.37 0.21 0.60 0.04 0.40 
ElasticN 0.87 0.73 0.34 0.85 -0.82 0.73 
KRidge 0.65 0.16 -0.01 0.53 -0.05 0.16 
KNN -0.31 -0.46 -0.70 -0.90 -0.10 -0.51 
Lasso 0.84 0.74 0.34 0.90 0.00 0.62 
Linear 0.67 0.29 -0.11 0.55 -1.16 -0.21 
RF 0.44 0.24 0.08 0.58 0.00 0.38 
Ridge 0.72 0.37 0.11 0.59 0.03 0.49 
TFNN 0.48 0.33 0.37 0.61 0.34 0.42 
SVM 0.74 0.76 0.68 0.81 0.45 0.50 

D
at

as
et

 

AdaB 0.33 0.11 0.04 0.24 0.04 0.18 
ElasticN 0.36 0.21 0.06 0.37 -0.07 0.25 
KRidge 0.28 0.05 -0.02 0.32 0.03 0.08 
KNN -0.01 -0.01 -0.06 -0.08 0.01 -0.03 
Lasso 0.35 0.21 0.07 0.39 0.08 0.24 
Linear 0.30 0.11 -0.04 0.29 -0.47 -0.09 
RF 0.30 0.13 0.04 0.40 0.01 0.25 
Ridge 0.31 0.13 0.02 0.33 0.01 0.26 
TFNN 0.11 0.02 0.03 -0.36 0.07 0.09 
SVM -0.01 -0.03 0.00 -0.03 0.00 -0.01 

 

 
Table 39. Evaluation metrics for surrogate linear regression using the ORB datasets 

  
ORB-30-36 ORB-30-60 ORB-30-120 ORB-54-60 ORB-54-120 ORB-108-120 

S u
rr

og
at

e 

AdaB -5.07 -10.59 -14.12 -45.45 -11.07 -0.33 
ElasticN 1.00 1.00 1.00 1.00 1.00 1.00 
KRidge 1.00 1.00 0.37 1.00 0.46 0.38 
KNN -23.10 -49.96 -39.15 -59.13 -14.02 -4.49 
Lasso 1.00 1.00 1.00 1.00 1.00 1.00 
Linear 1.00 1.00 -8.09 0.34 -0.68 -1.86 
RF -0.21 -3.37 -0.61 -7.46 -2.05 -0.18 
Ridge 1.00 1.00 0.62 1.00 0.74 0.62 
TFNN 0.56 -1.02 0.17 -2.18 0.80 0.89 
SVM -5.76 -12.73 -8.41 -90.55 -7.83 -2.68 

D
at

as
et

 

AdaB -1.56 -2.10 -4.30 -18.63 -3.63 -0.05 
ElasticN 0.39 0.24 0.12 0.43 0.21 0.33 
KRidge 0.46 0.35 0.10 0.53 0.16 0.18 
KNN -1.36 -3.08 -3.22 -4.15 -0.64 -0.30 
Lasso 0.39 0.24 0.13 0.44 0.22 0.33 
Linear 0.46 0.36 -2.58 0.18 -0.27 -0.96 
RF -0.11 -1.81 -0.29 -4.99 -1.05 -0.09 
Ridge 0.45 0.34 0.17 0.52 0.26 0.28 
TFNN 0.16 -0.17 -0.02 -1.10 0.10 0.16 
SVM -0.02 -0.02 -0.04 -0.08 -0.03 -0.02 
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When training linear regression surrogates for Ridge Regression, Elastic Net or Lasso 

Regression, we sometimes achieve a perfect score of 1, because the overall method 

is the same for both the surrogate and target model. All models are based on a 

weighting of input features and adding an independent term. Therefore, Ridge 

Regression, Elastic Net or Lasso Regression yield a surrogate linear regressor with 

the same coefficients. The surrogate training can be skipped completely, and these 

models can be used as linear surrogate model directly. 

 

Surrogate decision trees do not achieve a perfect score when trained on a decision 

tree (see first row of Table 36), because hyperparameters might influence the training, 

which uses a “greedy” algorithm to build its nodes. To achieve perfect similarity with 

the target model here, we will instead simply use the target decision tree model as 

surrogate directly, since it is interpretable by design anyway. 
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6 Simulations and Evaluations 

6.1 Simulation Targets 

Giving patient data into a model will provide an estimation for the variable the model 

was trained for to predict, that is the result of a QoL questionnaire or conditions 

affecting the patient’s wellbeing like anxiety or pain. If the target variable of the model 

is a QoL indicator for a future time point, the model itself can give predictions for the 

future condition of the patient. However, it is not able to directly infer what medical 

interventions improve the expected QoL. 

 

A central task of ASCAPE is to actively propose medical interventions to the medical 

staff that are expected to improve the patients QoL. Simulations with the AI models 

will be used to infer what treatments will improve the expected QoL the most. The 

results shall contain what treatments are recommended and provide some 

explanations and metrics to let the medical staff evaluate the proposal. 

 

6.2 Simulation Concepts and Techniques 

To identify promising treatments and other medical interventions in the dataset, the 

behaviour of the model can be studied by making changes to the input data and 

observing the models’ predictions. When making a prediction for a QoL indicator, the 

model takes all input features it was trained on into account. Usually, these input 

features are not stochastically independent and even if they are, many machine 

learning methods will process them in a way that each variable’s influence on the 

prediction is dependent on other variables. Therefore, input features cannot be 

analysed independently to identify promising treatments. 

 

Taking the dependency between multiple input variables into account on the other 

hand is a computationally expensive task. If the input data has n variables, the 

complexity of running simulations for every possible combination of input values is On. 

This is not feasible for any case occurring in ASCAPE. Therefore, a small subset of 

the possible input data space must be found that can be used for simulations. 

 

The input variables can be classified into three types: Direct proxy variables indicating 

if an intervention has taken place or not, variables that can be influenced by 

interventions (e.g., blood pressure) and static variables that cannot be influenced by 

interventions (e.g., age or household income). Only the former two types are relevant 

for simulations. 

 

A simple approach was taken at first and only the proxy indicators for treatments were 

simulated by being set to 0 or 1. With this, slight changes in the output of models 

trained on the retrospective Örebro dataset were observed. The use of Feature 

Attribution methods shows that the treatment proxy variables influence the output of 

the models just slightly, which is expected because the treatment itself does not yield 

information about the condition of the patient directly. When a treatment is performed, 
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it influences other medical data variables, which then influence the patients QoL 

directly. To analyse the influence of a treatment on medical data, two approaches were 

implemented and tested: 

For the first approach, covariances between each treatment proxy and each variable 

containing medical data were calculated and normalized with the treatment proxy’s 

standard derivation. This assumes that all variables are normally distributed. 

Therefore, a second approach was implemented in which the patients of the training 

dataset were split into two cohorts for whether they received a treatment or not. This 

is done for each treatment individually. The expected change of a variable after a 

treatment was calculated as the difference of its mean value in the two cohorts. 

To propose a treatment, the steps as described in the algorithm shown in Figure 16 

are as follows: First, the influence of all input variables on the prediction are measured 

with feature attribution. If desired, only the k most influential variables are changed 

during the simulation. In the second step, the expected change of all selected variables 

in the first step is calculated for each treatment. Then, for each patient and for each 

possible treatment, an inference with the model is performed. The input is the patient 

data with the respective treatment proxy set to 1 and the other variables increased or 

decreased according to the expected changes of the treatment. Then, the difference 

of the models’ prediction for the current, actual medical data of each patient and the 

prediction for the treatment is calculated, resulting in the predicted change of QoL 

when a treatment is performed. 

For each patient, the treatment with the highest predicted QoL increase is proposed 

in the ASCAPE dashboard. This proposition of the treatment is explained with the 

calculated feature attribution and the predicted QoL increase is shown. 

For the prediction of binary indicators denoting if a QoL-related issue will emerge like 

in the BcBase dataset, the simulation process must be slightly adapted. A models’ 

prediction on such a dataset can only have the values 0 and 1, meaning the output 

Dataset: d 
Model: m 
Treatments: t 
Patient_sample: s 
Changeable medical variables: v 
 
iterate over each t in t: 
   feature_attr ← get_attribution(m, s, t) 
   treatment_influences ← mean(dt=1) – mean(dt=0) 
   current_prediction ← m.predict(s) 
   s[t] ← 1 
   s[v] += treatment_influences 
   simulated prediction ← model(s) 
   expected_qol_change ← sim_prediction - current_prediciton 
Propose t with largest expected_qol_change 

Figure 16. Pseudo code outlining the steps used to propose treatments. 
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values are not continuous. Therefore, we instead evaluate the class probabilities and 

use them do a risk prediction. 

Figure 17 shows the expected change in probability of suffering from pain based on a 

sample simulated with a Naïve Bayes model trained on the BcBase-Pain dataset. 

Since we want to reduce the risk, “Adjuvant chemotherapy with CMF” is the 

recommended treatment since it reduces the risk by about 5%. 

6.3 Summary of Simulation Evaluations 

The retrospective datasets are limited in their structure to provide information about 

how treatments influence a patient’s medical data. A central drawback is that most 

variables are only collected once. To identify a clear causality between a treatment 

and other medical data, it would be necessary to collect each variable multiple times 

before and after the dataset. Since the prospective datasets will also contain regularly 

collected data, the effects will be easier to identify once that data is available. We will 

also investigate techniques to identify the influence of treatments more precisely, like 

splitting the patients into many small cohorts like a matched case-control study [18]. 

However, it is not easy to evaluate simulations, because for a benchmark a ground 

truth would be needed. There is no information about the QoL increase after 

treatments that have not been done yet. 

 

  

Figure 17. Example of the expected change of risk of pain evaluating the class probabilities of a Naive Bayes 
classifier trained with BcBase. 
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7 Conclusions 

This deliverable reported on the first experiments with different machine learning 

methods considered to develop a data driven assistive service to help preserve and 

possibly improve the quality of life of cancer patients. The experiments were 

conducted on 10 datasets derived from retrospective datasets with respect to 

classification and regression and uniform evaluation metrics were fixed. The main 

findings and derived next steps:  

• Missing value inference by simple methods can be as effective as missing 

value inference done by regression methods. 

• The optimal value of the ε parameter of differential privacy performed by using 

the Laplace mechanism with respect to mean average error and an acceptable 

level of privacy is around the value 1.  

• Regarding classification the best performing locally trained algorithm was the 

Naïve Bayes classifier, but the overall performance was satisfactory on the 

negative classes while it was more error-prone for the positive class. 

• The simulated federated trained classifier models had comparable and even 

better performance than the locally trained models. 

• In the locally trained setting, the Lasso regression model is the best performing 

model to predict quality-of-life values and significantly outperformed the 

baseline Dummy regression model.  

• The simulated federated trained regression models were found to be 

comparable to locally trained regression models for short term QoL predictions, 

but not for long term QoL predictions. Thus, future work will examine different 

neural network architectures for long term QoL predictions. 

• In comparison to the above used models on non-encrypted data, the models 

trained on homomorphically encrypted data showed weaker results, which is 

mainly due to the fact that the current HE library can only operate with the SGD 

optimizer. Thus, future next steps are concerned to extend the HE library to 

enable the use of more enhanced optimizers  

• For feature attribution as one mechanism for explainability, the SHAP 

framework provides the mathematically best basis using the game-theoretic 

concepts of Shapley-values and has been evaluated in previous work to be 

particularly consistent with feature attribution estimations done by human 

experts. Next steps will be to investigate together with the clinical partners how 

sensible the obtained feature estimations are from an expert’s perspective. 

• To use surrogate models as a second mechanism for explainability, the 

surrogate model must accurately approximate the target model to explain. In 

the classification case, trained decision tree and linear regression based 

surrogate models have accuracies very similar to the target models. In the 

regression case, linear regression trees surrogate models are also very 

accurate, while decision tree based surrogate models are less accurate, but 

still acceptable. The next steps will consist of investigating how useful for a 

medical expert the information that can be read out of a surrogate model can 

be in general, as well as for the assessment of the quality-of-life impact for a 

specific patient. 
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• A simulation-based approach was implemented to compute treatments ranked 

with their expected increase/decrease of the quality of life for a specific patient 

based on systematic variations of key feature identified by feature attribution. 

The first experiments are promising, but more investigations are required, as 

the retrospective data contains limited information to assess the impact of 

treatments on medical conditions of patients and because of lacking ground 

truth to compare simulation results to.  

Overall, the experiments and evaluations performed thus far in the project based on 

retrospective data in order to assess if and which machine learning methods can result 

in useful assistance are promising. Key issues to address have been identified and 

future work will be devoted to these, in order to have the appropriate methods in place 

to apply as soon as prospectively collected datasets arrive from the ASCAPE pilot 

sites.  
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