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Executive Summary  

The goal of the ASCAPE project is to support cancer patients’ health status as much 
as possible and to improve their Quality of Life (QoL). The deliverable reports on the 
current development stage of essential ASCAPE components and services that will be 
fully implemented in accordance with the ASCAPE architecture until the end of the 
project.  
The Proof of Concept (PoC) is demonstrated based on currently existing retrospective 
datasets from ASCAPE pilots. First part of the presented activities is focused on 
essential issues of the Edge-Cloud Architecture. As Kubeflow framework was chosen 
for the Cloud activities, k3s a lightweight production-ready Kubernetes distribution, was 
used for the ASCAPE Edge-Cloud Architecture PoC. Implementation of a Placeholder 
Container for each component in the ASCAPE Architecture is demonstrated. 
Additionally, two deployment configurations have been defined: one for the ASCAPE 
Edge Nodes and another for the ASCAPE Cloud. Further, the efforts are focused on 
data management and application of several powerful Machine Learning (ML) and 
Artificial Intelligence (AI) techniques on datasets prepared from existing retrospective 
data. Ten training datasets are prepared and used in experiments based on the same 
techniques and evaluations. The PoC contains several different stages: data pre-
processing and missing values imputation, application of differential privacy methods 
to protect patients’ personal data, the predictive federated model training including 
training with homomorphically encrypted data. Furthermore, for the purpose of better 
understanding of results obtained from models’ evaluation, characteristic explainable 
AI methods are employed and illustrated. All the obtained results, which are extensively 
presented in D2.4, are satisfactory and promising in almost all aspects except for long 
term QoL predictions and models trained on homomorphically encrypted data as only 
stochastic gradient descent optimizers were used at the moment. The ASCAPE 
mechanisms for ensuring security and privacy of the data and integrity of the platform 
are of high importance. WSO2 tool which supports authentication and acts as an API 
gateway is selected for the ASCAPE framework. The main features of WSO2 Identity 
Server and API Manager are briefly presented.  Kubeflow as a framework that contains 
a curated set of compatible tools specific to ML and running on Kubernetes (the cloud 
resource orchestration tool agreed with the partners) is briefly introduced. The 
justification of this selection as well as the key reasons are presented in detail. 
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1 Introduction 

One of the main purposes of the ASCAPE framework is to employ powerful 
mechanisms of Artificial Intelligence (AI) and Machine Learning (ML) to support cancer 
patients’ health status and Quality of Life (QoL) as much as possible. Two types of 
cancer are in ASCAPE’s focus: breast and prostate cancer. An essential activity in 
ASCAPE is training predictive models for identifying QoL indicators and using them for 
proposing adequate, beneficial interventions for individual patients. As results of 
predictive models can be presented in a form that is not user friendly for physicians, 
several methods of explainable AI have been considered. All of them are based on the 
trained predictive models.  
For achieving and assessing the quality of the predictive models, retrospective and 
prospective datasets from clinical partners will be used within the project. Until now, 
several retrospective datasets that are obtained from Orebro served as a basis for 
models training and evaluation. 
To support the deployment and execution of numerous AI services and to assure the 
development of mechanisms safeguarding the privacy and security of the data, the 
complex ASCAPE architecture (presented in D1.3) consisting of numerous 
components will be realised. In this deliverable, implementation of several 
characteristic functionalities and services that cover different aspects of the ASCAPE 
framework, will be illustrated as initial proof-of-concept (PoC). For trustworthy 
functioning of the ASCAPE continuous learning, predictive analytics, and decision-
making, reliable communication between ASCAPE Edge Node Platform and Cloud 
Platform is needed and will be supported in realization of ASCAPE architecture. 
This deliverable represents the first step towards full implementation of the ASCAPE 
prototype. Currently, it includes PoCs for several different kinds of services that will be 
fully implemented and incorporated in the ASCAPE framework at the end of the project. 
The deliverable is structured in accordance with the interconnected processes 
foreseen in WP3. It covers technical aspects of the framework that has been 
considered and developed until M14. Section 2 considers essential issues of the Edge-
Cloud Architecture. It provides a first realization of the technical architecture based on 
the conceptual architecture. At the moment it presents a realization of placeholders for 
the main components on the Edge and on the Cloud side. Section 3 is devoted to 
different ASCAPE data management services. The first group of services is focused 
on the process of data harmonization, transformations, and aggregations from different 
data sources. The second group of services is oriented towards components that 
facilitate collection of data from wearable devices and open weather data. Section 4 is 
focused on ASCAPE continuous learning support. First AI based data pre-processing 
is implemented. The ASCAPE federated learning is illustrated by two types of 
predictive QoL models: global and local. At the end, the use of homomorphic encryption 
mechanism to train and evaluate a global model on a collection of encrypted patient 
data is illustrated. Section 5 gives an outline of necessary steps that should be taken 
within ASCAPE framework to generate explanations based on predictive models. 
Selected feature attribution framework is justified, and effects of interpretable surrogate 
models are illustrated. Mechanisms that ensure the security and privacy of the data 
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within ASCAPE framework, i.e. a security management mechanism, an encryption 
block and a privacy block, are presented in Section 6. Within Section 7 evaluation and 
selection of a Cloud framework is performed. Thereafter, a set of proof of concepts that 
validate the selection is described. 
While D3.1 does not provide an integrated ASCAPE Prototype following the 
Architecture of D1.3, but rather initial PoC work across a number of areas, it provides 
a good starting point for the First and Final Integrated Prototypes (D3.2 and D3.3 
respectively).   This can be seen in Figure 1, which presents the ASCAPE Architecture 
and the relevance of various sections of the present deliverable to the various ASCAPE 
components of the Integrated ASCAPE Prototypes. 
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Figure 1. Relevance of work reported in D3.1 to the components of the Integrated ASCAPE Prototypes
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In order to easily follow and read the document the detailed corelation between 
components and their descriptions in sections/subsections is given in the following 
table: 

Table 1. Detailed correlation between components and their descriptions in sections/subsections 

Sections/ASCAPE 
Components 2 3.2 3.3 3.4 3.5 4.1 4.2 4.3 5.1 5.2 6.1 6.2 6.3 7 

HIS ASCAPE Integration 
Components  X X            

ASCAPE Device Data 
Adapter     X          

ASCAPE External Data 
Adapter    X           

ASCAPE Data Enricher    X           
ASCAPE Device Data 
Synchronizer     X          

ASCAPE Redacted 
Patient Data Manager      X    X  X X  

ASCAPE Edge AI 
Models Manager       X        

ASCAPE HE AI Models 
Manager        X       

ASCAPE Cloud 
Federated Learning 
Coordinator 

      X        

ASCAPE Edge AI 
Predictions & 
Simulations Manager 

      X  X X     

ASCAPE AI Knowledge 
Manager       X  X X     

ASCAPE HE Redacted 
Patient Data Manager             X  

ASCAPE HE AI Results 
Manager        X      X 

ASCAPE Edge 
Surrogate Manager         X      

ASCAPE Cloud Global 
Surrogate Models 
Manager 

        X      

ASCAPE Edge Security 
Gatekeeper           X    

ASCAPE Cloud Security 
Gatekeeper           X    
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2 Edge-Cloud Architecture Proof of Concept  

The present Proof of Concept deliverable marks the beginning of the transition from 
requirements and a conceptual architecture to a technical architecture. It also marks 
the beginning of the transition from isolated proof-of-concept implementations of 
various key areas of the ASCAPE Framework functionality to an integrated prototype 
(D3.2 and D3.3). 
The Edge-Cloud Architecture Proof of Concept serves the project in both of these 
crucial transitions as: 

1. It provides a first realisation of a technical architecture based on the detailed 
conceptual architecture of deliverable D1.3 at the level presented in the 
ASCAPE Architecture Diagram (Figure 1). 

2. It provides a full realisation of the said architecture albeit with placeholders for 
the various edge-side and the cloud-side components. These placeholders are 
to be replaced with actual implementations in the coming months. 

The hardware requirements for the ASCAPE Framework are given in D1.1. The only 
update for the Proof of Concept (current deliverable) and the upcoming First and Final 
Integrated Prototype (D3.2 and D3.3, respectively) is that it was decided that the GPUs 
to be supported are CUDA-enabled nVidia GPUs, a range of GPUs available at 
different price points with the widest support by ML frameworks. 

2.1 Edge and Cloud Orchestration Platform  

Given the momentum and ubiquity of the Kubernetes platform in the Cloud space, its 
status as the de facto standard for microservices orchestration on the Cloud and the 
familiarity of technical partners with the technology, the Consortium decided on 
Kubernetes as the orchestration platform for the ASCAPE Cloud. 
For the Edge, the Consortium considered options that would provide a solid foundation 
for production Edge Nodes at Healthcare Providers while utilising technology that 
would not require a different tool set and a different skill set than Kubernetes.  It was 
also decided that Edge Nodes should not be, by default, controlled by the Cloud in 
terms of configuration and updates allowing Healthcare Providers to have full control 
over them; on the other hand, where Healthcare Providers wish to perform updates or 
enable automatic updates, this should be easy for their IT staff to do. Considering the 
above requirements, k3s stood out as the platform that could bring the world of 
Kubernetes onto the Edge in a production environment while also having the 
advantage of facilitating development for both the edge and the cloud.  Unlike other 
lightweight Kubernetes distributions that aim to facilitate development, k3s was 
developed for production scenarios. It is a distribution of Kubernetes that packages all 
the necessary components but omits cloud provider-specific drivers and alpha-stage 
components in a single binary that makes it easy to create simple or even high-
availability clusters on the Edge or on the Cloud with minimal resource overheads. 
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For the purposes of the Edge-Cloud Architecture Proof-of-Concept, k3s was used for 
both the Edge and the Cloud. This is in line with the aim to use k3s as a means of 
creating test edge and cloud environments for development purposes on development 
machines (e.g. laptop and desktop computers) and the aim of the Edge-Cloud 
Architecture Proof of Concept to be the starting point for the development of the 
integrated prototype of the ASCAPE Framework. As noted above, k3s is also the 
platform currently selected to be used in production Edge Nodes in the First and 
Second Prototypes. For the production version of the ASCAPE Cloud, k3s is one of 
the Kubernetes distributions to be considered and tested further in the upcoming 
months, though it should be emphasised that a choice of a different distribution for the 
Cloud will not affect the development of ASCAPE, nor will it mean that k3s will no longer 
be able to support testing both the ASCAPE Edge and the ASCAPE Cloud components 
on a developer’s laptop as it is a fully compliant Kubernetes distribution. 

2.2 Placeholder Containers 

The Edge-Cloud Proof-of-Concept Architecture aims to facilitate an implementation of 
the Integrated ASCAPE Prototype, starting with a Placeholder Container for each 
edge-side and each cloud-side component in the ASCAPE Architecture (Figure 1). 
Kubernetes (and k3s) supports OCI (Open Container Initiative) container runtimes and 
is therefore compatible with Docker-created container images. A container image was 
created for each edge-based and for each cloud-based component (Table 2). The 
content of the container images are specified in a number of Dockerfiles (see Figure 
2). 

Table 2. Edge and Cloud Components in the Architecture Proof of Concept 

Component Deployment Container Image  
ASCAPE Data Enricher Edge Enricher 
ASCAPE Device Data Synchroniser Edge device-data-synchroniser 
Edge AI API Gateway Edge ai-api-gateway 
Redacted Patient Data Manager Edge redacted-patient-data-manager 
Edge AI API Predictions & 
Simulations Manager 

Edge predictions-simulations-manager 

Edge AI Model Manager Edge edge-ai-model-manager 
Edge Surrogate Model Manager Edge edge-surrogate-model-manager 
HE Redacted Patient Data Manager Cloud he-redacted-patient-data-manager 
HE AI Results Manager Cloud he-ai-results-manager 
ASCAPE AI Knowledge Manager Cloud ai-knowledge-manager 
Cloud Surrogate Model Manager Cloud cloud-surrogate-model-manager 
Cloud Federated Learning 
Coordinator 

Cloud cloud-federated-learning-coordinator 

HE AI Models Manager Cloud he-ai-models-manager 
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Figure 2. Dockerfiles for a selection of placeholder images corresponding to upcoming edge and cloud components 

The Edge-Cloud Architecture Proof-of-Concept provides a multi-component version of 
the “Hello World” program capable of mimicking the interaction between ASCAPE 
components. The code running inside the placeholder containers (Figure 3) provides 
an API that returns a list of one or more greeting messages; the first is from the 
component contacted and the remaining, if any, from components it is configured to 
connect to (which may in turn return additional greetings from components they, in turn, 
are connected to).  

 

Figure 3. Code used in Placeholder Container Images  
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The details of the container image definitions (Figure 2) and placeholder code (Figure 
3) that result in the various placeholder containers are not important for further work in 
the project as each and every one of them is to be eventually replaced with an actual 
implementation of the corresponding component. What is important is the fact that they 
allow the definition of a proof-of-concept technical architecture for the Edge and the 
Cloud with placeholder containers corresponding to instances of the micro-services 
foreseen in deliverable D1.3 that are ready to be replaced with actual implementations.  
In addition, the Edge-Cloud Architecture Proof of Concept, as is or appropriately 
tweaked, can be used in preparing the hardware and network infrastructure for 
developing, testing and deploying ASCAPE. 

2.3 Edge and Cloud Deployment 

Two deployment configurations have been defined (Figure 4): one for the ASCAPE 
Edge Nodes (edge.yaml) and one for the ASCAPE Cloud (cloud.yaml).1 It is possible 
to create a cluster with only the Edge or with only the Cloud components, or both (for 
integrated Edge-Cloud testing on a developer’s machine).  Instructions are given 
below.  

 
Figure 4. Kubernetes Edge and Cloud Configuration Files: edge.yaml and cloud.yaml 

2.4 Installation 

The ASCAPE Edge and Cloud Architecture Prototype can be deployed on a k3s cluster 
either in part (edge or cloud) or in whole (edge and cloud – for local deployment) using 
a few simple command line commands. For the instructions below, a modern Linux 

 
1 The edge and cloud deployment configuration files can be downloaded from 
https://www.dropbox.com/s/25100eb02chpfol/edge.yaml?dl=0 and 
https://www.dropbox.com/s/je2icg2gi5lsy62/cloud.yaml?dl=0 respectively. 
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distribution supported by k3s is assumed and administrator (root) privileges are 
required. 
First, if k3s is not already installed and up-and-running, the following command will 
ensure it is.  
 
curl -sfL https://get.k3s.io | sh - 
 

Deploying the edge components, can be accomplished with the following command  
 
curl -sL https://www.dropbox.com/s/25100eb02chpfol/edge.yaml?dl=0 | kubectl apply -f -  
 

Deploying the cloud components, can be accomplished with the following command  
 
curl -sL https://www.dropbox.com/s/je2icg2gi5lsy62/cloud.yaml?dl=1 | kubectl apply -f - 
 

To monitor the k3s cluster at 1 second intervals, the following command can be used: 
 
watch -n1 "kubectl get pods"  
 

If used in a different terminal prior to deploying the edge and/or cloud components, it 
will offer the opportunity to follow the progress of k3s in creating the containers, 
downloading their images and initiating them.  The expected result after the images 
have loaded and the containers have been initiated should be similar to what is 
depicted in Figure 5. 

 

Figure 5. Result of monitoring ASCAPE Edge and Cloud Architecture Proof-of-Concept pods 

To test that the communication between the cluster and the host machine as well as 
the communication pathways between the edge and cloud components are working, 
either a command-line tool or a browser can be used to inspect the results of the API 
(http://localhost:20000/hello) provided by the ASCAPE Edge-Cloud Architecture Proof 
of Concept. 
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Figure 6. Using a browser to test the exposed test API 
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3 ASCAPE services for data management  

This section is devoted to the description of different ASCAPE data management 
services: from data sources and collection to data transformation and visualisation. The 
first subsection presents data that has been processed and analysed in experiments 
up to now. The second subsection describes the process of data harmonisation, 
transformations and aggregations from different data sources, while the third 
subsection is dedicated to the proof of concept of the API responsible for the 
transformation and transmission of the new structured data into the server. Finally, the 
last two subsections give the overview of the proof of concept of the components that 
facilitate the acquisition and collection of open weather data and data from wearables 
in the ASCAPE framework. 

3.1 Types of data 

ASCAPE’s main goal is to collect different types of cancer-related data from multiple 
sources in order to predict patients’ QoL aspects, indicate clinical outcomes and be 
able to recommend the intervention that best suits them. Among the data sources are 
patient health data obtained from healthcare providers, including patient self-reported 
data, and other data obtained by various means like wearables or from open data 
sources.  
For the purposes of the present Proof of Concept deliverable, anonymized 
retrospective breast and prostate cancer datasets and/or their description have been 
used for several purposes: (1) to select variables of interest and design ASCAPE 
common data model for data collection during pilots; (2) to create and train AI models 
and algorithms; and (3) to create 9 fake sample registers derived from one of Örebro’s 
datasets that have been used in the PoC API. Detailed description of retrospective 
datasets from pilots can be found in deliverables D1.2 and D2.1. 
The ASCAPE common data model will be followed during pilots in order to collect 
information in the same homogenized and standardized way for all clinical sites. By 
following that process, a smoother path for post analysis of patient clinical data will be 
achieved.  
In addition to initial variables of interest, new ones will also be collected from Pilots 
such as sensor data, and nutritional data. Nutrition information will be collected through 
questionnaires and have been included into the ASCAPE data model, ready to be 
gathered during pilots. Using raw data or aggregate data from wearables need to be 
fully defined and probably not all of them will be necessary transformed into FHIR. 
Additional sources of data will be used to supplement clinical data and patient self-
reported data.  Such data aim to offer a broader perspective of factors that influence a 
patient’s QoL and the comparative suitability of one intervention over another. Proof-
of-concept work in this direction includes the initial progress towards the Fitbit wearable 
devices data adapter and the Weather data adapter described in more detail in the rest 
of the Section. 
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3.2 Data harmonization, transformations, aggregations, from different 

data sources 

Regarding the retrospective datasets, to date, their transformation has been identified 
and the mapping to HL7 FHIR format and their codification to SNOMED CT has been 
performed. In spite the fact that three of the four pilot sites have provided one or several 
retrospective datasets with breast and/or prostate cancer data, still for the PoC we will 
demonstrate the transformation only with the Örebro dataset. It is worth mentioning 
that all the datasets are different from each other in both format and content. A 
homogenisation agreement has been reached, culminating in the creation of a data 
model common to all. Deliverable D2.1 describes the process in more depth. 
Transformed data will be stored into a HAPI FHIR repository [1].The most convenient 
way to access and enter data in the HAPI repository fulfilling the ASCAPE common 
data model is through APIs. Through them, it is possible to introduce the information 
of interest without having knowledge of FHIR or SNOMED CT. In addition, a series of 
actions can be carried out, such as data retrieval. Using the API, data and information 
can be obtained and the final structuring and coding of the data within the model can 
be visualised. 

3.3 API for proof of concept (test data insertion and retrieval) 

Once the data model is defined and created, data must be transformed according to it 
and stored to the ASCAPE server. A possible way to insert not homogenised data into 
the server is using an API for transformation and channel the new structured data into 
the server (Figure 7). 

 
Figure 7. The process for transforming Örebro sample according to the ASCAPE data model and inserted into 

ASCAPE server through the API. 

If the direction of actions is the other way (data retrieval from the server), the first 
contact with the structured and codified ASCAPE data model can also be made through 
an API (Figure 8). 
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Figure 8. Scheme of how data can be retrieved from ASCAPE server through the API. 

The API will assist the user in a simple and straightforward way to transform the input 
data into the desired common format supported by ASCAPE common data model. The 
API will allow the user to: (1) interact with the data in a more intuitive and human-
readable way; (2) perform several tasks with the data such as collecting data from the 
dataset sample, adding new data and retrieving queried data; (3) comprehend and 
visualise how data is stored in HL7 FHIR format and codified with SNOMED CT 
terminology through an interface.  An initial version of the API is produced as a part of 
the PoC and described in the following paragraphs. 
The POST API (Figure 9) allows the insertion of data in a semi-automatic or automatic 
way, providing and indicating the fields to be completed and the way to do it (allowed 
values, type of variable, meaning of the content within the whole dataset, etc.). 

 

 
Figure 9.The code for the POST method for patient-related data entry. The coloured box shows content schema 
(type and permitted values). They correspond to the variables of interest and match HL7 FHIR patient attributes 

(patient identifier, marital status, postal code and gender). 
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Besides, the GET API also enables the retrieval of data through simple queries, making 
it easier for the user to obtain information and data of interest. In Figure 10, a specific 
example is presented: patient information retrieval given their ID. A patient ID is 
represented in String format, so for the PoC simple numeric or letter values can be 
used as they are not real patient IDs. 

  
Figure 10. The GET method for patient-related data retrieval. Left: patient identifier entry. Right: query result: 

patient-related data structured following HL7 FHIR. 

 

The number of variables of interest included in the PoC are less than the total amount 
shaping the ASCAPE common data model. Consequently, not all the variables of the 
ASCAPE common data model will have available content at this point. This will only be 
achieved after the completion of the pilots, when clinical partners collect all of them. 
Data used and fed into the system as a sample for this first proof of concept are 9 fake 
records from one of Örebro's breast cancer datasets. Fake data implies that no real 
patient information is used and, therefore, data is completely anonymized and patient 
security is not violated. The upload process has been achieved using the data flow 
toolApache Nifi [2], which facilitate data transformation processes and information 
flows between systems and files (Figure 11 and Figure 12). Apache Nifi is an ETL tool 
that smooths data extraction, transformation and loading for the implementer. For the 
PoC construction, Apache Nifi was useful to extract data from Örebro sample fake 
dataset, transform them into the ASCAPE common data model (HL7 FHIR-structured 
and Snomed CT-codified), and load transformed data into the API. 
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Figure 11. General diagram. Örebro sample automatic insertion into the API fields using Nifi. 

 

 
Figure 12. Process: (1) sample data caption using Apache Nifi; (2) Nifi extraction of information matching API 

schema; (3) API fields are filled and data transformed; (4) homogenised and structured data is stored in ASCAPE 
server following ASCAPE common data model, HL7 FHIR and SNOMED CT. 

Amongst the information contained in the sample dataset and dumped into the 
ASCAPE system through the API for the PoC are the following: 

1) patient-related data such as identifier, BMI, age at diagnosis; 
2) tumour-related data such as diameter, body site/laterality, histological type, 
grade, N stage and T stage; 
3) performed treatment such as type and date of surgery, type of endocrine 
therapy and postoperative complications; 
4) other relevant medical conditions such as Charlson Comorbidity Index, 
percentage of estrogen and progesterone receptors, HER2 positivity, Ki-67 
factor and number of positive lymph and sentinel nodes; and  

(1) (2) 

(3) 

(4) 
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5) quality of life and satisfaction questionnaires. 

3.4 The ASCAPE Weather Adapter 

The ASCAPE Weather Data Adapter is an External-Data Adapter offered by the 
ASCAPE framework to facilitate the acquisition and collection of weather open-data 
originating from a predefined list of open weather data sources. The adapter’s 
implementation is following a microservices-based architecture and it is composed of 
a set of microservices, each one implemented with a specific context and role in the 
adapter’s designed solution. The designed solution is aligned with the HIS Data 
Synchronization and Enrichment process, as defined in deliverable D1.3 and 
constitutes the proof of concept for the ASCAPE Weather Data Adapter in M14 towards 
the fully operational version of the adapter that is expected on M24. 
The first microservice named Weather Data Handler is providing the periodic 
schedulers of the adapter for each weather open-data source, based on the data 
source profiles and an intermediate storage. The second microservice named 
Orchestrator is undertaking the intercommunication between the Weather Data 
Handler and the third microservice named Weather Data Parser, which is being 
invoked by the Data Handler, once a scheduler is successfully executed. The third 
microservice, namely the Weather Data Parser, undertakes the task of retrieving the 
new information from the intermediate storage, parsing and indexing the new 
information. The fourth microservice named Weather Data Explorer is providing the 
ASCAPE-specific API of the ASCAPE Weather Data Adapter which is leveraged by the 
Data Enricher component in order to retrieve the required weather information for a 
specific area and a specific period. 

 

Figure 13. ASCAPE Weather Data Adapter - The periodic scheduler of Data Handler 

The implementation of the ASCAPE Weather Data Adapter is currently on the following 
private Gitlab repositories and access can be given upon request: 

• https://gitlab.ubitech.eu/dsa/ascape/data-workflow-orchestrator 
• https://gitlab.ubitech.eu/dsa/ascape/data-handler 
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• https://gitlab.ubitech.eu/dsa/ascape/data-parser 
• https://gitlab.ubitech.eu/dsa/ascape/data-explorer 

3.5 The Fitbit Device Data Adapter 

The Fitbit Device Data Adapter is an ASCAPE Device Data Adapter offered by the 
ASCAPE framework to enable the retrieval and local storage of data originating from 
the family of Fitbit wearables. For the implementation of the specific adapter the 
microservices pattern is also adopted. The Fitbit Device Data Adapter is composed by 
four core microservices, namely the Adapter Controller, the Fitbit Data Scheduler, the 
Fitbit Data Indexer and the Fitbit Data Retriever. 
The role of the Adapter Controller is to facilitate the execution of the overall adapter 
process, from the data collection from the Fitbit Cloud service to the retrieval of the 
locally collected data from the ASCAPE Device Data Synchronizer, as described in the 
Device Data Synchronization process in deliverable D1.3. The Fitbit Data Scheduler 
undertakes the core functionality of periodically interacting with the Fitbit Web API in 
order to fetch the data of the monitored Fitbit devices, as instructed by the ASCAPE 
Device Data Synchronizer. The Fitbit Data Indexer is responsible for the interpretation 
and indexing of the locally downloaded data from the Fitbit devices. Finally, the Fitbit 
Data Retriever undertakes the implementation of the ASCAPE-specific API of the Fitbit 
Device Data Adapter that serves the data retrieval requests originating from the 
ASCAPE Device Data Synchronizer. 

 

Figure 14. ASCAPE Fitbit Device Data Adapter - The periodic scheduler of Fitbit Data Scheduler 

The described solution is provided as a proof of concept in M14 and it will drive the 
implementation activities towards the fully operational implementation of the adapter 
that will be delivered on M24. The implementation of the Fitbit Device Data Adapter is 
currently on the following private Gitlab repositories and access can be give upon 
request: 

• https://gitlab.ubitech.eu/dsa/ascape/data-workflow-orchestrator 
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• https://gitlab.ubitech.eu/dsa/ascape/data-handler 
• https://gitlab.ubitech.eu/dsa/ascape/data-parser 
• https://gitlab.ubitech.eu/dsa/ascape/data-explorer 

3.6 Implementation technologies for PoC demonstration 

The main component of the PoC for data transformation is the API through which users 
can interact (insert and retrieve data). The API was implemented using Swagger UI [3] 
and Eclipse IDE. Data format in the API follows ASCAPE common data model which 
is HL7 FHIR-structured and Snomed CT-codified. The creation of this common data 
model was developed using Java and Eclipse IDE, incorporating FHIR dependencies. 
Fake data registers for PoC were extracted from the original file and loaded into the 
API using Apache Nifi ETL tool. 
The implementation of both the ASCAPE Weather Data Adapter and the FitBit Device 
Data Adapter is based on a set of well-established open-source libraries and 
frameworks. The adapters are implemented in Java 11 where the Spring Boot 
framework [4] is utilised. Beyond this framework, MongoDB [5] is utilised for the data 
source profile management as well as the adapters’ operational storage, MinIO [6] 
storage server is utilised as an intermediate storage and Elasticsearch [7] is exploited 
as an indexing engine. Finally, in order to fully leverage the query capabilities of 
Elasticsearch, GraphQL Spring Boot library [8] is employed on top of it. 
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4 ASCAPE Continuous learning support 

In this section we will give an overview of the continuous learning support within 
ASCAPE project. First, we give implementational details regarding dataset pre-
processing steps. Then we present all the modules that support federated learning. 
Finally, we describe how homomorphic encryption is implemented within the project. 

4.1 AI based data pre-processing 

Before training AI models, the available datasets must be pre-processed. Some pre-
processing steps are mandatory, while the others only improve the predictive power of 
trained models. In the following text we will present and demonstrate three AI based 
pre-processing steps: missing values inference (MVI), outlier detection and removal, 
and Differential Privacy (DP). 
4.1.1 Missing values inference (MVI)  

Many AI models are incapable of processing data with missing values. Therefore, 
before training such models, missing values must be imputed. The missing values 
imputation is implemented in the module mvi. Before imputing missing values, the 
instances without target attribute are removed. After that, a missing value inference 
algorithm is applied on the input dataset. As a final step, a new column named “fold” is 
added in the dataset, so that each dataset instance gets its fold value. This step is 
needed for the experiments’ validation and will be thoroughly explained in the following 
text. Finally, the resulting dataset is output to the desired path. 
The module mvi offers two different MVI algorithms: simple imputer and iterative 
imputer. Simple imputer fills missing values within a single attribute by using the mean 
of the attribute’s existing values. Iterative imputer is a bit more complex: it creates a 
regression model for each attribute and then it fills missing values of an attribute with 
predictions obtained from the attribute’s regression model. A regression model for a 
single attribute is fit on instances with non-empty value for that attribute. After filling all 
the missing values, iterative imputer repeats the whole procedure predefined number 
of times. For both MVI algorithms, we used corresponding scikit-learn [9] 
implementations(sklearn.impute.SimpleImputer, 
sklearn.impute.IterativeImputer). 

After the MVI algorithm is performed, stratified and randomized 10-fold division is 
performed on the dataset’s instances set. The fold values are placed in the 
aforementioned new dataset column named “fold”. By having this column, different 
experiments can perform 10-fold cross validation upon identical folds, which makes the 
results of such experiments fully comparable. For the 10-fold division we used scikit-
learn implementation sklearn.model_selection.StratifiedKFold. 

The module mvi is rather simple – it has a function apply_mvi that takes the path to 
the input set, the path to the output file, and the algorithm that will be used for missing 
values imputation (“simple” for simple imputer, “iterative” for iterative imputer). The 
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function performs all the aforementioned steps. An example of apply_mvi function 
call is given in Figure 15. 

 
Figure 15. A Python program that applies missing values inference on BcBase-Anxiety dataset. 

The module mvi also provides a CLI. The arguments provided by the CLI are given in 
Figure 16. 

 
Figure 16. CLI arguments of the module mvi. 

4.1.2 Outlier detection and removal  

The second pre-processing step is outlier detection and removal. Outliers are dataset 
instances that differ too much from the other instances. Outliers can negatively 
influence performance of AI models, and should sometimes be removed prior to AI 
model training. 
A mechanism for outlier detection and removal is implemented in the module 
outliers. In this module we used autoencoders for outlier detection: an autoencoder 
is trained on the whole dataset, and then the instances with the highest reconstruction 
losses are removed from the dataset. For the encoder we used a neural network with 
three dense layers that have 32, 16 and 8 output units, respectively, and that use relu 
activation function. For the decoder we used a neural network with three dense layers 
that have 16, 32 and F output units, F being the number of dataset features. For the 
first two decoder layers we used relu activation function, while for the last one we used 
sigmoid activation function. For this part of the project we used keras library [10]. 
After feeding the mentioned autoencoder with all dataset instances, we calculate the 
median and the standard deviation of all instances’ loss values. Then we set the outlier 
threshold by using the following formula: 

!ℎ#$%ℎ&'( = * + !!"#, 

* being median of loss values, , being standard deviation, and !!"# being user-defined 
threshold multiplier which defaults to 1. Each instance that has reconstruction loss 
higher than !ℎ#$%ℎ&'( is removed from the dataset. 

-d, --dataset 
    Path to the dataset. 
-o, --out (optional) 
    Path to the output file. If not given, resulting dataset will be saved 
in the current directory. 
-a, --algorithm (optional) 
    MVI algorithm. Possible values: 
    simple - takes the mean of attribute's values, and uses it to fill 
the missing values, 
    iterative (default) - creates a predictive model for each attribute, 
and uses it to fill the missing values. 
-h, --help (optional) 
    Displays help. 
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The module outliers provides a function remove_outliers that takes the path to 
the input set, the path to the output file, and the threshold multiplier. The function 
applies the outlier removal algorithm and stores the resulting dataset to the desired 
path. An example of remove_outliers function call is given in Figure 17. 

 
Figure 17. A Python program that applies outliers removal algorithm on BcBase-Anxiety dataset. 

The module outliers also provides a CLI. The arguments provided by the CLI are 
given in Figure 18. 

 
Figure 18. CLI arguments of the module outliers. 

4.1.3 Differential privacy 

The third pre-processing step is differential privacy. The task of this step is to protect 
the ML models from model inversion attacks. By performing these attacks, an attacker 
can reveal some amount of private information from the participants which participated 
in the training set just by querying the model. In order to prevent these kinds of attacks, 
a controlled amount of noise is added to the training data. This noise addition is 
performed on previously prepared data, with imputed missing values and with already 
removed outliers. DP is a pre-processing task but it is also a part of ASCAPE Security 
and privacy toolkit, so a more detailed explanation will be given in Section 6. 

4.2 Federated learning  

The ASCAPE federated learning is related to training (creating and updating) of two 
types of predictive QoL models: global models (models collectively trained on ASCAPE 
edge nodes without patient data exchange between nodes) and local models (models 
trained considering only training data available at a particular ASCAPE edge node). 
Predictions made by global models are derived from knowledge captured from various 
ASCAPE edge nodes. Local models reflect specificities of data at individual edge 
nodes and enable accurate predictions for specialized and rarely represented cohorts 
of patients. An ASCAPE edge node uses a local model for making QoL related 
predictions instead of the corresponding global model if the global model exhibits a low 
accuracy (or a high error) on training data available on that node. In this Section we 
present the current implementation of core ASCAPE machine learning services 
enabling the continuous learning of global and local models. Additionally, we 
demonstrate the first fully functional prototypes of the federated learning server and 
clients. 

-d, --dataset 
    Path to the dataset. 
-o, --out 
    Path to the output file. 
-t, --threshold (optional) 
    Outlier threshold multiplier. 
-h, --help (optional) 
    Displays help. 
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The core ASCAPE edge node machine learning services are enabled by a set of 
Python modules implemented using Scikit-learn [9] and Tensorflow [11] machine 
learning libraries. Those modules define classes and functions for training, storing, 
evaluating and applying both classification models (models predicting a discrete 
variable) and regression models (models predicting a numeric variable). The ASCAPE 
machine learning core contains the following modules: 

• loader – a module for loading datasets present at ASCAPE edge nodes, 
• skcl – a module for training and storing classification models using classifier 

learning algorithms provided by Scikit-learn,  
• skreg – a module for training and storing regression models using regression 

learning algorithms provided by Scikit-learn, 
• skie – a module realizing an inference engine (i.e., engine for making 

predictions) based on previously learned Scikit-learn based regression and 
classification models,    

• tfnn – a module for training and storing machine learning models based on 
Tensorflow neural networks performing either classification or regression, 

• tfnnie – a module providing an inference engine for Tensorflow based 
classification and regression models, and 

• evalm – a module providing various evaluation measures for classification and 
regression machine learning models. 

The loader module defines classes CSVDataset and FoldedDataset. Both 
classes load a csv dataset assuming that it does not contain missing values, i.e. they 
accept datasets previously treated by the missing value inference module described in 
Section 4.1. The FoldedDataset class loads csv datasets containing a special field 
determining how data instances are divided into separate folds when performing the 
K-fold cross validation. CSVDataset is used to load csv datasets without explicit fold 
assignments. CSVDataset treats the last column as the target or outcome variable 
(variable for which we want to build a predictive model), while all previous columns 
correspond to predictors variables (input variables used by the model to derive the 
value of the outcome variable). FoldedDataset is based on the assumption that the 
last two columns correspond to the target variable and fold assignment, respectively, 
while all previous columns are predictor variables. Both contains a method for 
separating the loaded dataset into two numpy arrays, one multidimensional containing 
predictor variables and one unidimensional containing the target variable.  
FoldedDataset additionally defines methods for returning the training and test 
dataset for a specified fold.  
 
4.2.1 Local models 

The skcl module contains a base class for training local Scikit-learn based 
classification models called SKLCModel. This class defines two generic methods: one 
for training the model and another for storing the model as pickled Python objects. The 
following classes are derived from SKLCModel: 
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• SVM_SKLC – a class for training support vector machine classifiers, 
• RF_SKLC – a class for training random forest classifiers, 
• NB_SKLC – a class for training Naïve Bayes classifiers, 
• KNN_SKLC – a class for training K-nearest neighbors classifiers, and 
• DT_SKLC – a class for training decision tree classifiers. 

A base class for training Scikit-learn based regression models, called SKLRModel, is 
defined in the skreg module. This class defines generic methods for training and 
storing regression models. The derived classes are: 

• DummyReg – a dummy regressor always predicting the average value of the 
outcome variable from the training dataset, 

• LinearReg_SKLR – linear regression, 
• RidgeReg_SKLR – ridge regression, 
• LassoReg_SKLR – lasso regression, 
• ElasticNetReg_SKLR – elastic net regression, 
• KernelRidgeReg_SKLR – kernel ridge regression, 
• SVM_SKLR – support vector machine regression, 
• RF_SKLR – random forest regression, 
• KNN_SKLR – K-nearest neighbors regression, and 
• AdaBoost_SKLR – AdaBoost regression. 

The skie module defines a class called SKModel for making predictions by previously 
trained and stored Scikit-learn based classification and regression models. The 
constructor of SKModel has one parameter which is the path to a stored model. The 
class defines two methods: predictSingle for making prediction for exactly one 
data instance (one patient) and predictMultiple for making predictions for multiple 
data instances (a set of patients). 
Python demo programs illustrating how to use modules realizing the ASCAPE edge 
node core ML services to train, save, load and make predictions using a classification 
model on patients from the BcBase dataset are shown in Figure 19 and Figure 20 
Figure 21 and Figure 22 show equivalent demos for a regression model on patients 
from the Orebro dataset. 
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Figure 19. A Python program demonstrating how to train and save a classification model trained on a part of the 

BcBase dataset using modules realizing the ASCAPE edge node core ML services. 

 

 

 
Figure 20. A Python program illustrating how to load previously trained classification model and to use it for 

making predictions on a part of the BcBase dataset (that was not used to train the model) using modules realizing 
the ASCAPE edge node core ML services. 
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Figure 21. A Python program demonstrating how to train and save a regression model trained on a part of the 

Orebro dataset using modules realizing the ASCAPE edge node core ML services. 

 

 

 
Figure 22. A Python program showing how to load previously trained regression model and to use it for making 
predictions on a part of the Orebro dataset (that was not used to train the model) using modules realizing the 

ASCAPE edge node core ML services. 

4.2.2 Global models 

Neural networks are the default machine learning model for global predictive models 
collectively trained on ASCAPE edge nodes. The tfnn module contains an abstract 
base class for models based on Tensorflow (deep) neural networks. This class, called 
FedTFNNModel, defines the following concrete (non-abstract) methods: 

• createModelDefinition – to specify the architecture of the neural network, 
the loss function, the activation function and regularization mechanisms, 
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• initModelStructure – to create the model structure (neural network layers 
and their ordering) according to the previously given specification, 

• setupTrainingData – to specify training data instances, 
• update – to update the model on previously prepared training data for given 

number of epochs, batch size, class weights (optional parameter) and callbacks 
(optional parameter; callbacks are functions executed after each epoch), 

• oneLearningRound – to perform model update in exactly one epoch, 
• setWeigths – to set weights of neural network edges, 
• getWeights – to obtain neural network edges, and 
• saveModel – to store the model.  

FedTFNNModel additionally defines two abstract methods: 

• initLastLayer – to create the last layer in the neural network (regression and 
classification neural networks differ in the last layer), and 

• prepareTrainigData – to prepare training data instance for a particular 
neural network type (in case of classification neural networks values of the target 
variable should be transformed one-hot encoding vectors, which is not the case 
for regression neural networks). 

Three classes are derived from FedTFNNModel providing specific implementations of 
its abstract methods: 

• FedTFNNRegModel – a Tensorflow neural network preforming regression, 
• FedTFNNClModel – a Tensorflow neural network preforming n-ary 

classification, and 
• FedTFNNBinClModel – a Tensorflow neural network performing binary 

classification. 
The tfnnie module provides inference engines for models based on Tensorflow 
neural networks. This module contains an abstract class TFNNInference. This class 
realizes the loading of a stored Tensorflow neural network model and it defines two 
abstract methods for making predictions based on the loaded model: predictSingle 
for making predictions on a single data instance and predictMultiple for making 
predictions on multiple data instances. Three classes are derived from this base class 
providing specific implementations of its abstract methods for different neural network 
types:  

• TFNNRegressor – an inference engine for Tensorflow neural networks 
performing regression, 

• TFNNClassifier – an inference engine for Tensorflow neural networks 
performing n-ary classification, and 

• TFNNBinClassifier – an inference engine for Tensorflow neural networks 
performing binary classification.        

The evaluation of all ASCAPE machine learning models is enabled by the evalm 
module. This module defines three classes for computing various metrics reflecting the 
quality of a model for provided real (ground-truth) values: 
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• EvalRegressionModel for evaluating regression models. The following 
metrics are implemented in this class: mean absolute error (MAE), mean 
squared error (MSE), the coefficient of determination also known as the R2 score 
and the Person correlation coefficient, 

• EvalClassificationModel for evaluating classification models. This class 
provides methods returning values of the following metrics: accuracy, precision 
per class, recall per class, macro-averaged precision, macro-averaged recall, 
F1 score and confusion matrix, and 

• EvalBinClassificationModel for evaluating binary classification models. 
This class is a simple specialization of the previous class for two fixed classes 
(positive and negative). 

A Python demo program demonstrating the 10-fold cross validation of a neural network 
regression model on the Orebro dataset realized using previously described modules 
from the ASCAPE edge node machine learning core is shown in Figure 23. 

  

 
Figure 23. A Python program showing how to perform the 10-fold cross validation of a neural network model on 

the Orebro dataset using modules realizing the ASCAPE edge node core ML services. 
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The learning of a global model is done in the interaction between one or more federated 
learning clients running on ASCAPE edge nodes on the one side and the federated 
learning server (federated learning coordinator) running at the ASCAPE cloud at the 
other side. In the current implementation, federated learning clients and the federated 
learning server are exchanging JSON serialized Tensorflow neural network models 
using TCP/IP sockets after each epoch during the neural network training. Two 
federated learning modes are supported: (1) the incremental mode in which one 
federated learning client (ASCAPE edge node) solely creates and/or updates a global 
model, and (2) the semi-concurrent mode in which two or more federated learning 
clients at some interval in time concurrently perform model learning. The ASCAPE 
federated learning for a particular model always starts in the incremental mode and 
switches to the semi-concurrent mode when the federated learning server detects that 
there is more than one federated learning client working with that model.  
The federated learning server performs multi-threaded and non-blocking 
communication with federated learning clients that is implemented in five Python 
modules: 

• ASCAPECloudFLManager – this module defines the class of the same name 
containing methods to initialize the federated learning server, accept 
connections from federated learning clients and create appropriate 
communication and synchronization (coordination) threads.   

• SingleModelManager – this module contains SingleModelManager class 
extending Thread class and realizing model synchronization threads. 
ASCAPECloudFLManager creates one model synchronization thread per each 
active model (a model becomes active with the first federated learning client 
working with it). One model synchronization thread coordinates all federated 
learning clients (their communication threads which are instances of 
SingleConnectionThread class described below) working with the 
corresponding model and performs the federated averaging process (averaging 
neural network weights) in the semi-concurrent federated learning mode.  

• SingleConnectionThread – this module defines 
SingleConnectionThread class realizing client communication threads. 
ASCAPECloudFLManager creates one client communication thread for each 
active federated learning client. Client communication threads perform 
communication with federated learning clients (receiving and sending neural 
network weights). 

• util – this module contains various helper functions to serialize and persist 
Tensorflow neural network models and functions for sending/receiving 
serialized models through Berkley sockets. 

• main – this module contains the main function that creates and starts an 
instance of ASCAPECloudFLManager class.  

The implementation of federated learning clients for Tensorflow neural network models 
is based on Tensorflow callbacks that are executed after each epoch during neural 
network training and after the model training ends. We have developed a generic 
module for building federated learning clients called callbacks. This module defines 
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EdgeNodeMLCallbacks class extending Tensorflow Callback class. Thus, 
instances of EdgeNodeMLCallbacks can be attached to any Tensorflow neural 
network model realized in the previously described tfnn module 
(FedTFNNRegModel, FedTFNNClModel and FedTFNNBinClModel). The 
constructor of EdgeNodeMLCallbacks makes a connection to the federated learning 
server (by creating a socket) and sends to it the identifier of the working model. The 
ASCAPE cloud federated learning manager checks whether the model corresponding 
to the received identifier exists among models persisted at the ASCAPE cloud. If the 
model exists then it sends model weights to the client and the model on the client is 
initialized with the received weights. Otherwise, the client sends the JSON-serialized 
model definition to the server. EdgeNodeMLCallbacks redefines two methods 
inherited from Tensorflow Callback class: 

• on_epoch_end – this method, executed after each epoch during neural 
network training, serializes current neural network weights, sends them to the 
federated learning server and then waits for its response containing either a 
message to continue with current weights (the incremental learning mode) or 
new weights obtained after the federated averaging performed by the server 
(the semi-concurrent learning mode). 

• on_train_end – this method, executed after the training ends, disconnects 
the clients from the server (by closing the socket created in the constructor).    

A demo federated learning client realized using the previously described modules and 
classes is shown in Figure 24. The demo federated learning client has two arguments 
passed via the command line: the path to the training dataset on which a model called 
tfnnbincl is created or updated and the path to the test dataset on which the model is 
evaluated. The model is a Tensorflow neural network performing binary classification. 
The model has 5 hidden layers, each layer containing 10 neurons. The model is trained 
by ASCAPE edge nodes running in 20 epochs. The binary cross entropy is used as 
the loss function and model updates are performed after processing batches containing 
16 instances from the training dataset. After creating an instance of the model, 
specifying the training dataset and specifying the structure of the model, a callback 
object is created and passed together with model learning hyperparameters to the 
update method called on the model. As already emphasized, the callback object 
handles communication with the federated learning server (in this example we assume 
that the federated learning server and clients execute on the same machine). When 
the federated learning process is finished, the model is saved and then loaded and 
evaluated using the appropriate inference engine (TFNNBinClassifier) and the 
appropriate model evaluation   class (EvalBinClassificationModel). 
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Figure 24. A demo federated learning client realized using the ASCAPE core ML services and the callbacks 

module. 

To illustrate execution of the previously described demo federated learning client, we 
divided the BcBase dataset into four parts, two training datasets and two test datasets, 
for two federated learning clients. Then, we have executed federated learning clients 
(running on the same machine as the federated learning server, but as three 
independent processes, where clients communicate with the server using TCP/IP 
sockets) in two scenarios. In the first scenario (Figure 25) federated learning clients 
were executed sequentially (the second client was started after the first client finished), 
which corresponds to the incremental federated learning in which the first client created 
the model and the second client updated the model.  
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Figure 25. Two ASCAPE edge node federating learning clients incrementally (one after another) training a 

federated tensorflow neural network on the BcBase dataset. Terminals running federated learning clients are 
shown on the left side, while the terminal running the ASCAPE cloud federated learning server is shown on the 
right side. Terminals running federated learning clients are shown on the left side, while the terminal running the 

ASCAPE cloud federated learning server is shown on the right side. 

Figure 26 shows the second scenario corresponding to the semi-concurrent federated 
learning: the second client was started while the first client was running (after its first 5 
epochs). It can be seen that in this scenario the federated learning server switched 
from the incremental learning mode to the semi-concurrent mode when the second 
client connected and returned back to the incremental mode when the first client 
finished. 
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Figure 26. Two ASCAPE edge node federating learning clients semi-concurrently training a federated tensorflow 
neural network on the BcBase dataset. Terminals running federated learning clients are shown on the left side, 
while the terminal running the ASCAPE cloud federated learning server is shown on the right side. Terminals 
running federated learning clients are shown on the left side, while the terminal running the ASCAPE cloud 

federated learning server is shown on the right side. 

4.3 Homomorphic encryption: training and prediction 

Homomorphic encryption is used as a privacy mechanism that enables both training 
and prediction on ASCAPE encrypted patient data. In this Section we present the 
current implementation of core ASCAPE machine learning services that enable the 
training of a global model on a collection of encrypted patient data, the prediction using 
the trained model and the evaluation. 
The core ASCAPE HE-based machine learning services are enabled through an in-
house developed C++ library that offers the necessary functions to train and test neural 
network-based models on ciphertext (MORE encrypted data obtained following the 
encryption algorithm presented in Figure 44). Moreover, a series of Python modules 
are implemented and offered for performance analysis. The HE setup, including 
ciphertext preparation, is presented in detail in Section 6.3. 
The ASCAPE HE-based machine learning core contains the following main modules: 

• training – a module for training and storing HE encrypted neural network-
based machine learning models, 

• prediction – a module realizing an inference engine (i.e., engine for making 
predictions on HE data) based on previously learned model. 



 

 

 Project No 875351 (ASCAPE) 

 D3.1 : Cancer-care predictive analytics and decision-
making services: proof of concept demonstration 

 Date: 27.02.2021 

 Dissemination Level: PU  

 

Page 42 of 72 
 

The training module calls the Training function which is responsible for training 
a neural network-based machine learning model. The training module enables a MLP 
(multi-layer perceptron), whose configuration and hyperparameters are specified into 
a configuration file (config). The training algorithm is shown in Figure 27. The 
arguments needed to call this module are following: 

arg1: Training input (ciphertext) data file (path +.csv 
filename) 
 arg2: Training labels (ciphertext) data file (path +.csv 
filename) 
 arg3: Destination directory to save the model 
 arg4: Config file (.json file) 

The prediction module calls the Prediction function which is responsible for 
performing predictions based on the neural network model previously trained. The 
prediction module required the configuration (config) file used by the training model to 
instantiate the model but also the weights learned during training. The prediction 
algorithm is shown in Figure 27. The arguments needed to call this module are 
following: 
 arg1: Source input (ciphertext) data file (path +.csv 
filename) 
 arg2: Destination data file to store the encrypted 
predictions (path +.csv  
 arg3: Path to the saved the model 
 arg4: Config file (.json file) 
 

 
Figure 27. Neural network-based analysis on ciphertext data. 
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An example on how to call the C++ modules from Python is shown in Figure 28. 
Experiments.cpp contains the module calls training and prediction, as previously 
described.  

 
Figure 28. Calling C++ modules. 

Training of HE AI-based models has been performed on for two retrospective datasets: 
Breast cancer BcBase dataset and Prostate cancer Orebro dataset. The HE training 
setup and the performance evaluation are described in details in Deliverable 2.4. The 
performance of the encrypted models is performed after the decryption of the results. 
Evaluation metrics for these two datasets are implemented in the Jupyter Notebook 
Metrics.ipynb. This notebook also contains the functions for aggregating the folds’ 
output. The list of this notebook’s functions is listed below: 

- denormalize – denormalizes the predictions using the formula:  
-$%&'(!)#*+%$ = -,(%$ 	(max(3) − min(3)) + min(3) 

- regression_predictions – concatenates the predictions for the Orebro datasets 
- regression_stratistics – calculates the regression statistics 
- BA_plot – plots the Bland Altman plot 
- Scatter_plot – plots the Scatter plot 
- total_confusion_matrix – returns the sum of the confusion matrixes of each fold 

of the BcBace datasets 
- classification_metrics – calculates the binary classification metrics 
- print_evaluation_regression – prints statistics and plots for the regression 

problem (Orebro) 
- print_evaluation_classification – prints metrics and confusion matrix for the 

binary classification problem (BcBase)  
The Results.ipynb notebook calls the corresponding functions and prints the final 
results for each 10 main datasets. Figure 29 shows an example for the BcBase Anxiety 
dataset.  

 
Figure 29. Results.jpynb example – BcBase Anxiety. 
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4.4 Implementation technologies and PoC repositories 

The ASCAPE core machine learning services, enabling training and instrumentation of 
predictive global and local models by ASCAPE Edge AI Models Manager and ASCAPE 
Edge AI Predictions & Simulations Manager, are developed in the programming 
language Python using three free and open-source machine learning libraries: 

1. Scikit-learn [9] – a library providing various classification, regression and 
clustering algorithms designed to interoperate with the Python numerical and 
scientific libraries NumPy and SciPy. The library additionally provides classes 
and functions used to implement the validation procedures for ASCAPE 
predictive models. 

2. Tensorflow [12] – a machine learning and symbolic math library developed by 
the Googe Brain Team that is based on dataflow and automatic differentiation 
principles enabling training and inference of deep neural networks.  

3. Keras [10] – a library focused on artificial neural networks. Keras acts as an 
interface for the abovementioned Tensorflow library. 

The source code of ASCAPE core machine learning services is available at the 
following ASCAPE GitLab repository: https://gitlab.com/ascape-h2020/machine-
learning/coreedgeml. The source code of the federated learning server (part of Cloud 
Federated Learning Coordinator) and the federated learning client (part of Edge AI 
Models Manager) prototypes can be found at: https://gitlab.com/ascape-
h2020/machine-learning/fl-prototype. 
The ASCAPE core machine learning services on HE data makes use of CipherML – 
an in-house developed library for privacy-preserving machine learning, which is based 
on the MORE encryption scheme. The library can be used to train standard neural 
network models, but also to make inferences (predictions) based on MORE 
homomorphically encrypted data. The library offers a high-level Keras-like API that 
enables fast prototyping privacy-preserving neural network models with minimal code. 
Written in the C++ programming language, the CipherML allows learning-based 
models to be defined by stacking one building block on top of the other, and then 
trained on MORE homomorphically encrypted data by simply calling the fit method. 
Similarly, prediction can be performed using the predict method. 
The evaluation of the trained models was performed in Python 3.8 using SciKit-Learn 
package, Matplotlib-package. The source code for model evolution is available at the 
following ASCAPE GitLab repository: https://gitlab.com/ascape-h2020/machine-
learning/a3-model-evaluation/-/tree/master/Homomorphic%20Encryption.  
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5 Cancer care predictive Explainable AI 

All QoL predictions made by any model in the ASCAPE platform are critical information 
that could influence the decision of which medical interventions will be done. Therefore, 
every prediction must be provided with information on how the decision was made, with 
what data it was made and how accurate the prediction is. 

5.1 Explainable AI 

The accuracy (and therefore reliability) of a model is determined during model 
evaluation after the training process. For regression models, the mean absolute error 
is a good performance indicator. If the predictions of a model are following a normal 
distribution, the MAE can be interpreted like the standard deviation. The calculated 
error can then be provided for every prediction the model is used for. When retraining 
the model, it is evaluated again, and the MAE is updated as well. For classification 
tasks with neural networks, the weights of the output vector can be used as an indicator 
for the reliability. All weights of the output vector sum up to 1 if a softmax-activation is 
used. To make sure a weight corresponds to the probability that the classification is 
correct, the softmax-layer’s temperature must be calibrated, although this is trivial to 
do. For all classification models that are not neural networks, Scikit-learn provides a 
function called predict_proba with the same functionality. 
ASCAPE makes use of different machine learning techniques. Some of them, like 
artificial neural networks, are based on complex algorithms processing high-
dimensional data and cannot be easily described. Therefore, surrogate models are 
used. Surrogate models are machine learning models that are interpretable by design 
(e.g., decision trees or linear regressors). For each model used in ASCAPE, a 
dedicated surrogate model is trained to provide explanations for its predictions. They 
are trained on the same training input data that the regular model is trained on but 
instead of using the ground truth as labels, the output of the regular model is used. 
This way they mimic the predictions of the model used to make a prediction. Their 
decision process can then be used to explain a prediction or to provide a ruleset 
describing the inference of models’ outputs that is too complex to be understood by a 
human. In ASCAPE, linear regression, logistic regression and decision trees are used 
as surrogate models. Decision trees can be visualized and used for a human readable 
rule extraction. The coefficients of a linear/logistic regressor describe linear 
dependencies between the input and the output of a model. A full description and 
evaluation of trained surrogate models can be found in Deliverable 2.4, section 5.3. 
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Figure 30. Visualization of a surrogate decision tree model. The top line in each box describes the split condition. 

Feature attributions describe how strongly each input variable influences the models 
output. There are various concepts to calculate feature attribution like Permutation 
Importance, LIFT, Integrated Gradients and SHAP. In ASCAPE, we decided to use 
SHAP, because it is based on Shapley values, a game-theoretic approach, which is 
mathematically founded and can therefore be consistently calculated for different 
model types. It satisfies the properties of Additive Feature Attribution, which means 
that the average expected model output φ0 plus the calculated Feature Attributions φi 
sum up to the model output f(x): 

8(3) = ϕ- +:ϕ*
*./

 

We will use the same-named python library SHAP [3], which also makes use of other 
state-of-the-art feature attribution techniques to accelerate the computation. Figure 32 
shows the implementation of a FeatureAttribution class, which internally uses SHAP’s 
KernelExplainer class to calculate model-agnostic Feature Attributions for predicitons. 
The SHAP-library also contains concepts and implementations to visualise feature 
attribution values in an intuitive way as shown in Figure 33. It shows a bar plot of the 
mean absolute feature attributions of a ridge regression model trained on the ORB-30-
120 dataset. 
We implemented an explainable model class, which is a wrapper class for the regular 
model inference class (Figure 31). It provides a set of methods to infer explanations 
with any underlying AI model. For each prediction ASCAPE can provide: 
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• Confidence levels of the prediction 
• The decision path of the decision tree surrogate model 
• Feature attributions for each input feature 

For any model, ASCAPE can provide: 

• Overall Feature attribution of the training dataset (See Figure 33) 
• Visualization of the surrogate decision tree (See Figure 30) 
• Coefficients of the surrogate linear regressor 

 

 
Figure 31. Initialisation of the ExplainableModel class. It unifies all components needed to provide explanations for 

every prediction 

 
Figure 32. Feature Attribution class using SHAP to measure the influence of input features on the model's output 
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Figure 33. Bar plot showing the average absolute feature attribution of a test dataset. 

5.2 Simulations  

A central objective of ASCAPE is to actively propose medical interventions that 
potentially improve the patient’s future quality of life. The machine learning models 
themselves can only infer estimations of the QoL based on a patient’s medical data. 
To identify medical interventions, changes in the input data are made, passed through 
the model and the predictions are recorded. 
Currently, the following steps are executed to perform simulations and identify 
promising treatments: 
First, Feature Attribution is used to identify variables that strongly influence the QoL 
prediction. This way features that have little influence on the output can be filtered and 
are not changed during simulations. 
The patient data contains proxy variables indicating if a certain treatment was done. If 
a treatment was done, it will influence other variables in the patient’s medical data. 
These influences must be identified. As of now, only retrospective datasets are 
available, which only contain medical data that was collected once. The datasets are 
therefore lacking information on how the treatments influence the medical data. 
Therefore, the second step is the segmentation of the dataset into two cohorts for each 
treatment. One cohort contains all patients who did receive the respective treatment 
and the other did not. The influence of a treatment is then calculated as the difference 
between the variables’ mean values of the two cohorts. 
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Once prospective datasets are available, this step will be re-evaluated and may be 
optimized to identify more accurate causalities from interventions to other medical 
variables. For retrospective datasets, accuracy might be further improved with matched 
cohorts [14]. 
Third, for each treatment proxy that equals 0, i.e., every treatment that was not done 
yet, all other variables are changed according to the influences calculated in the second 
step and the treatment proxy is set to 1. This way hypothetical patient data is created 
in which a medical intervention has been taking place. The data is passed into the AI 
model and the QoL prediction is recorded. This step gets executed for each treatment 
proxy individually. Figure 34 shows the implementation of this step. The function 
simulate_treatment expects a sample containing patient data that shall be simulated, 
the treatment to be simulated and an array containing the expected changes in health 
data once the treatment took place. A more thorough explanation and more examples 
can be found in deliverable D2.4, Section 6.3. 
Last, the treatment that increased the predicted QoL the most is highlighted as a 
recommended intervention to the ASCAPE user. Regarding explainability, the 
expected increase in QoL, the accuracy of the model and the calculated feature 
attributions of the first step are shown as well. 
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Figure 34. Simulation of patient data changes after a treatment and inference of predictions 
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Figure 35. Example of a simulation result. Only brachytherapy is expected to improve the QoL of the patient. 

5.3 Implementation technologies and PoC repositories 

Both Explainability and Simulations were implemented using Python 3.8. For data 
management, the Pandas-package was used. Plots were generated using the 
Matplotlib-package. As described in Section 5.1, the SHAP-package was used to 
calculate Feature Attributions. The surrogate models were trained using SciKit-Learn 
[1]. 
The code for the Proof of Concept is available in two repositories in the ASCAPE GitLab 
repository. A4-Explainability contains the wrapper class for explainable AI, surrogate 
training and evaluation (Link: https://gitlab.com/ascape-h2020/machine-learning/a4-
explainability). A5-Simulations contains all the code to run the simulations itself (Link: 
https://gitlab.com/ascape-h2020/machine-learning/a4-explainability). Since Feature 
Attribution techniques are used for it, this repository is referenced as a submodule in 
A4-Explainability. 
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6 ASCAPE Security and privacy toolkit  

In the context of ASCAPE, mechanisms will be designed and developed to ensure the 
security and privacy of the data held in the platform and the integrity of the platform 
itself. A security and privacy toolkit that consists of a security management mechanism 
(Security Gatekeeper), an encryption block (Homomorphic Encryption) and a privacy 
block (Differential Privacy) will be deployed. The work carried out concerning those 
three mechanisms for the Proof of Concept is described below. 

6.1 Security Management  

The ASCAPE Gatekeeper is an ASCAPE component that enables authentication and 
acts as an API gateway. The tool, integrated in the ASCAPE framework to offer these 
services, is WSO2 [15] and the products, chosen for the ASCAPE framework and will 
be demonstrated as a proof of concept in M14, are:  

• WSO2 Identity Server (IS) [16] 
• WSO2 API Manager (APIM) [17] 

Those two products were first evaluated, based on a detailed state of the art analysis 
of solutions available in the open-source ecosystem. 

6.1.1 WSO2 Identity server 

WSO2 IS provides secure identity and access management by managing identity of 
the users efficiently and by facilitating the centralized management, administration, and 
monitoring.  
6.1.1.1 Architecture elements 
WSO2 IS, despite being a commercial off-the-shelf packaged solution (not a custom-
made solution), enables easy customisation and extension through its componentised 
architecture. The WSO2 IS can be used directly by administrators (or other users if 
proper authorisation is provided), through its Management Console. Apart from the 
registered users, IS can be used as an identity provider for third party systems that 
have their own set of users. 
The Identity Server is using inbound authenticators. An inbound authenticator parses 
all the incoming authentication requests and, if they can be handled, converts them 
into a format understood by the IS authentication framework and passes them to the 
authentication framework. It then constructs corresponding responses for all the 
supported protocols and passes along the response to the calling party. SAML 2.0, 
OAuth 2.0 and Open Id Connect are some of the supported authentication protocols. 
6.1.1.2 Customisation 

In order to use the services provided by the IS, an ASCAPE component needs to be 
registered in it. The registration procedure of an Open Id Connect (OIDC) - OAuth 2.0 
Relying Party (client) consists of the actions listed below: 
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1. Registration of the Relying Parties in the IS where the callback URL and Relying 
Party (client) name need to be provided. 

2. Communication of Client ID and Client Secret to the Relying Party.  

The registration procedure of a Service Provider using the SAML 2.0 authentication 
protocol follows the actions listed below: 

1. Registration of the Service Provider in the IS. 
2. Metadata exchange between IS and the Service Provider. 

6.1.1.3 Authorisation Flow  

According to OAuth2.0 specification [8] the Resource owner (API owner) is responsible 
for either granting access to authorized users or preventing unauthorized users from 
accessing a resource (an API). For that to happen: 

1. The API consumers send a valid OAuth2.0 access token, as HTTPS request 
parameter, along with every API call.  

2. Once the API Server receives the call, it validates the access token against the 
OAuth2.0 Authorization server.  

3. If the token is valid, it processes the request and replies to the consumer API. 
Otherwise, the server returns an error response. 

6.1.2 WSO2 API manager 

The WSO2 APIM’s main features are design and prototyping for SOAP or RESTful 
APIs, governance policies and access control with OAuth2. It accepts OpenAPI 
(formerly Swagger) specifications [18] and manages throttling, access level and 
integration with Identity provider. 
6.1.2.1 Overview  
WSO2 API Gateway provides a runtime and a backend component (an API proxy) for 
API calls. It secures, protects, manages, and scales API calls by intercepting API 
requests and applying policies, such as throttling and security, using handlers and 
managing API statistics. Upon validation of a policy, the Gateway passes Web service 
calls to the actual backend. If the service call is a token request, the Gateway passes 
it directly to the Key Manager. After the API Manager server has started, you can 
access the Gateway using the Management Console.  
6.1.2.2 Message Flow 
Messages that reach the Gateway are processed as follows: 

1. When a request hits the API Gateway, it is received by the HTTP/HTTPS 
transport that is responsible for carrying messages in a specific format. The 
transport provides a receiver and a sender (for receiving and sending messages 
accordingly). 

2. The receiving transport selects a message builder, based on the message's 
content type, and uses the selected one in order to process the message's raw 
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payload data and convert it into a common XML, which the Gateway mediation 
engine can then read and understand. 

3. The request is passed through a set of handlers that applies the quality of 
services on the request message. Furthermore, it enforces security rate-limiting, 
and transformations on API requests if applicable. 

4. After all the requests are routed to the backend endpoint, a message formatter 
(selected based on the message's content type) is used to build the outgoing 
stream back into its original format based on the message. 

5. The transport sends the message out from the Gateway. 

6.1.3 Cloud Server Installation 

The WSO2 APIM was deployed on a VM in Openstack running on the Cloud Server. 
For the purpose of the Proof of Concept demonstration, docker and docker compose 
were installed. In the ASCAPE Gitlab a docker-compose.yml file is provided that, upon 
its execution, creates all the containers needed to run the demo. 

The url https://cloud.ascape-project.eu will redirect to the login page and, once the 
credentials are inserted, the WSO2 API Publisher will enable the design of a new REST 
API (Figure 36) or the use of an existing REST API. After adding the apicdoc url and 
the endpoint, the API should get published in order to be visible in the Developer Portal 
and available for subscription. After the keys are generated, the API can be invoked 
using curl. The generation of keys is presented in Figure 37 and the curl command that 
runs, in order to execute the REST API call is presented in Figure 38. Since this is a 
PoC demonstrator, there is no SSL certificate issued yet for the website that hosts the 
demonstrator, so the web browser has the not-secure indication visited. 
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Figure 36. REST API creation 

 
Figure 37. Production of OAuth2 Keys 
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Figure 38. The curl command that runs in order to execute the REST API 

6.2 Differential privacy 

Within the ASCAPE project, DP will be implemented by adding a controlled amount of 
noise (the noise which follows Laplacian distribution) to the training data before the 
training process. In such a way, the whole learning model will preserve the desired 
amount of privacy. The more detailed explanation of DP concept is explained in the 
deliverable D2.4 which is submitted in parallel with this one.  
This demonstration will introduce a privacy preserving parameter epsilon and illustrate 
how this parameter influences privacy. Also, this parameter influences the accuracy of 
the models, and this demonstration is also presented here. The extensive evaluation 
on all retrospective datasets and with several prediction models is not feasible in this 
timeframe, so the proof-of-concept demonstration will focus on one dataset and on 
several prediction models. This section will present the key features of the implemented 
DP component, while deliverable D2.4 will contain the detailed evaluation and results 
of this component. 
The component for handling DP within ASCAPE project is DP_dataset.py. This 
component contains two functions which are responsible for the addition of noise to 
the input dataset. This dataset should not contain missing values, which means that it 
accepts datasets previously treated by the missing value inference module described 
in Section 4.1. The output database is in the same format as the input database, but 
with added noise to the majority of features. 
The function which essentially calculates the noise is laplaceMechanism() which 
is shown in Figure 39. It has two parameters: (1) the value on which the noise should 
be added and (2) the epsilon parameter. The output of the function is the input value 
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with added noise which draws samples from the Laplace distribution whose scale 
(decay) is 1/ε. 

 
Figure 39. Function laplaceMechanism. 

The function add_noise() performs noise addition on the whole dataset (Figure 40.). 
The first two parameters are the names of input and output files. The third parameter 
represents the set of features (columns) on which the noise addition is not applied. 
Those features should include: categorical features, Boolean features, one-hot-
encoding features, class features, etc. The last parameter represents the value of DP 
epsilon parameter. The function performs the noise addition on the values of all 
features which are not listed in exclude_set from the input file. The result is saved 
in the output file. 

 
Figure 40. Function add_noise. 

Figure 41. shows the fragment of code which applies 10 values of ε-noise on the Orebro 
dataset. Note that exclude_set contains 21 feature names for this dataset, and that 
not all values are shown in figure. 

 
Figure 41. A Python program illustrating how to perform noise addition on dataset. 

As already mentioned, the output database is in the same format as the original input 
database which is prepared with the missing inference component (described in 
Section 4.1). Accordingly, the same evaluation methodology as described in Section 
4.2 could be applied here. 
The main challenge in the introduction of privacy preserving techniques in machine 
learning models is the optimal balance between the privacy and the utility of models. 
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This is the consequence of the fact that more privacy generally means more noise, 
which could lead to the reduction of model performance/accuracy. A more detailed 
analysis of this challenge is presented in deliverable D2.4, while here as a 
demonstration of proof of concept the results from the Figure 42 will be shortly 
described. 

 
Figure 42. The performance of linear regression model with different values of noise. 

Figure 42. shows the Mean Absolute Error (MAE) of the linear regressor for several 
models built upon datasets with and without noise. Lower values of MAE mean a better 
regression model. The red line represents the MAE value of linear regression model 
built upon a dataset without noise. Blue series represent the value of MAE for linear 
regression models built upon datasets with different values of ε parameter, namely: 
0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50 and 100. As expected, very low values of ε, which 
means a lot of added noise, cause a poor performance of regression model (high 
values of MAE). For the ε=1 the DP model has approximately the same MAE as the 
model without noise. Surpassingly, for the values ε>1 DP models perform even a little 
better than model without noise. This and other results suggest that the concept of 
adding noise to the training data is applicable within ASCAPE project as a privacy 
preserving technique. Furthermore, the addition of a controlled amount of noise will not 
have a negative impact on produced machine learning models. 

6.3 Homomorphic encryption setup 

The core ASCAPE HE services, that are presented in Section 4.3, are enabled through 
an in-house developed C++ library that offers the necessary functions to encrypt and 
decrypt the data using the MORE encryption scheme (Table 3).  
Homomorphic encryption is special form of encryption that allows data to be encrypted 
while it is being manipulated. Although a homomorphic cryptosystem is governed by a 
private key to encrypt and decrypt data, it greatly varies from other forms of encryption 
as it preserves the algebraic properties of the data to allow a variety of operations to 
be performed directly on the encrypted data (ciphertext data) without requiring access 
to the decrypted information (plaintext data) or encryption key. Hence, it represents a 
promising solution for enabling a third party to process the data in the encrypted form 
without having to disclose the underlying information. 
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A variant of a matrix-based homomorphic encryption scheme, called MORE (Matrix 
Operation for Randomization or Encryption) is employed to enable AI-based data 
processing on real-data. Following the MORE approach, a matrix-based symmetric 
secret key is generated upon which a numerical value is encrypted as a matrix and 
matrix algebra is employed to provide a fully homomorphic behavior. The original 
message can only be recovered by the owner of the secret key. All operations 
performed on ciphertext data are matrix-based operations, e.g., addition of plaintext 
scalars is equivalent to the addition of ciphertext matrices. The considered 
homomorphic encryption scheme is noise-free (unlimited number of operations can be 
performed on ciphertext data), non-deterministic (multiple encryptions of the same 
message and with the same key result in different ciphertexts) and is adapted to directly 
support floating-point arithmetic. Moreover, it allows a broader spectrum of operations 
to be performed over encrypted data, including non-linear functions. The 2 by 2 setup 
of MORE encryption scheme is summarized in Table 3. The order of the regular matrix 
used to encrypt a message represents a parameter that controls the trade-off between 
security and efficiency: by increasing the scheme complexity (i.e., matrix order) security 
is improved at a cost of slightly longer running times. 

Table 3. MORE encryption scheme setup over rational numbers. 

Message Scalar value * ∈ ℝ 
Secret key generation Invertible matrix = ∈ ℝ0×0  
Matrix construction  > = ?* 0

0 #A, where # ∈ ℝ is a random 
parameter 

Encryption operation BCD#E!F&C(*) = G = =>=2/ 
Decryption operation H$D#-E!F&C(G) = I = =2/G= 
Message recovery * = I(/,/) 

 

Knowing that ultimately AI models break down to a series of repeating blocks of 
computations that rely on a limited set of simple operations over floating-point numbers 
and by leveraging the homomorphic property of the MORE scheme, the functionality 
of AI models can be extended to hold for operations on ciphertext data. Therefore, the 
MORE homomorphic encryption scheme enables the use of encrypted data for training 
and testing AI models, without requiring the content of the decrypted data. 
The ASCAPE HE-based machine learning core contains the following main modules: 

• Keygeneration – a module for generating and storing the MORE encryption 
key,  

• encryption- a module for encrypting and storing ciphertext patient data, 
• decryption – a module for decrypting and storing plaintext patient data. 

The Keygeneration module is responsible for generating and storing the MORE 
secret key. The MORE key generation algorithm is shown in Figure 43. The argument 
needed to call this module is the following: 
 arg1: Path to save the encryption key  
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Figure 43. MORE secret key generation 

The encryption module is responsible for encrypting the ASCAPE data using the 
MORE secret key. The encryption algorithm is shown in Figure 44. The arguments 
needed to call this module are the following: 

arg1: Source (plaintext) data file (path +.csv filename) 
 arg2: Destination data file to store encrypted values (path 
+.csv filename)  
 arg3: Path to the generated encryption key  
 

 
Figure 44. MORE encryption. 

The decryption module is responsible for decrypting ciphertext data using the 
MORE secret key. The decryption algorithm is shown in Figure 45. The arguments 
needed to call this module are the following: 
 arg1: Source (ciphertext) data file (path +.csv filename) 
 arg2: Destination data file to store decrypted values (path 
+.csv filename)  
 arg3: Path to the generated encryption key  
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Figure 45. MORE decryption. 

6.4 Implementation technologies and PoC repositories 

The Security Gatekeeper, the component that provides security management, is 
comprised by the off-the-self components: WSO2 IS and WSO2 APIM. The main 
components of WSO2 tool are developed with java and in the core are using siddhi 
and other restfull technologies. WSO2 tool enables easy customisation, configurations 
and integration changes. The code used for the implementation and the demonstration, 
is available at the following ASCAPE GitLab repository: https://gitlab.com/ascape-
h2020/wso2-demo. 
The ASCAPE DP component, enabling addition of Laplacian noise on the training data, 
is implemented in the programming language Python using two free and open-source 
software libraries: pandas (for data manipulation and analysis) and NumPy (for large, 
multi-dimensional arrays and matrices). The source code of this component is available 
at the following ASCAPE GitLab repository: https://gitlab.com/ascape-h2020/machine-
learning/a1-missing-value-imputation/-/tree/master/DP 
The homomorphic encryption library based on MORE scheme was implemented in 
C++. This module offers a set of interfaces for encryption, decryption, and key 
generation. The framework provides C++ helper functions for supporting algebraic 
operations on private data. It depends on Eigen which is a C++ template library for 
linear algebra: matrices, vectors, numerical solvers, and related algorithms. 
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7 ASCAPE AI Models Framework 

The main focus regarding the cloud framework lied on evaluating and experimenting 
with different frameworks and selecting the one that best fits the ASCAPE 
requirements. The second topic of interest was devising a set of proof of concepts that 
validate the selection.  

7.1 Kubeflow as ML Framework 

The chosen framework that will serve as the base for the cloud efforts is Kubeflow.  
When it comes to machine learning systems, it can be especially challenging to 
manage the application, platform, and resource considerations. In a cloud 
environment, ML applications have a different footprint from other web or mobile 
deployments. For example, a training phase is resource-intensive, while the inference 
phase is lightweight and speedy. Simultaneously, one needs to find and integrate or 
develop the tools and frameworks to handle aspects such as configuration, data 
collection and verification, serving infrastructure, analysis tools, feature extraction, 
machine learning code, etc. Kubeflow is a framework that contains a curated set of 
compatible tools specific to ML. It also runs on Kubernetes, the cloud resource 
orchestration tool agreed with the project partners.  
Kubeflow is built around composability, portability, and scalability. Composability 
allows one to reason about the ML stages as independent systems and use only the 
parts that make sense for a particular use case (Figure 46.). 

 
Figure 46. System structuring of ML stages. 

Portability allows a researcher to have the same ML workflow experience irrespective 
of where Kubeflow is running. The same interface and contracts exist whether running 
locally or in the cloud. 
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7.1.1 Local installation 

In the ASCAPE Gitlab group, we have provided a Vagrantfile that will set up a local 
instance of Kubeflow for development. The file can be found on the following link: 
https://gitlab.com/ascape-h2020/cloud/kubeflow-intro/-/blob/master/mini-
kf/Vagrantfile. Regardless of the OS, one should be able to use VirtualBox; however, 
other options like KVM2 on Linux, Hyper-V on Windows, and HyperKit on macOS all 
work as well. 
Kubeflow's pipeline system is built using Python, and having the SDK installed locally 
will allow one to build pipelines faster. However, if software can’t be installed locally, 
one can still use Kubeflow's Jupyter environment to develop the pipelines. 

 
Docker is also part of the minimum requirements, allowing one to customize and add 
libraries and other functionality to the custom containers.  
The pipeline system is used to orchestrate ML applications. Orchestration is necessary 
because a typical ML implementation uses a combination of tools to prepare data, train 
the model, evaluate performance, and deploy. By formalizing the steps and their 
sequencing in code, pipelines allow users to formally capture all of the data processing 
steps, ensuring their reproducibility and auditability, and training and deployment steps. 
The Kubeflow Pipelines platform consists of: 

• A UI for managing and tracking pipelines and their execution (Figure 47) 
• An engine for scheduling a pipeline’s execution 
• An SDK for defining, building, and deploying pipelines in Python 
• Notebook support for using the SDK and pipeline execution 

 

 
Figure 47. Kubeflow’s Pipelines UI. 
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7.1.2 Model Training 

Containers are used as first-class citizens in Kubernetes. This means that Kubeflow is 
agnostic to the ML framework that a researcher uses. As mentioned before, training is 
based on the idea of pipelines and structuring the process in clearly defined steps.  
Kubeflow also provides integration between its SDK and tools that are part of the 
framework. This allows a scientist to use Jupyter notebooks as the source for the 
training pipelines. The pipeline SDK interaction is abstracted away, allowing the 
researcher to focus on the ML topic rather than on defining pipelines. Therefore, each 
notebook cell materializes as a pipeline step (Figure 48). 

 
Figure 48. Direct Acyclic Graph of training job. 

7.1.3 Model Serving 

Our research regarding model serving has sought to cover a complete inference 
solution that includes serving, monitoring, and updating. Serving is responsible for 
packaging the model in a service that can handle prediction requests. See below part 
of a containerized web application (Figure 49 and Figure 50) that wraps a 
homomorphically encrypted model. The full example is committed in the ASCAPE 
cloud group on Gitlab in the following link: https://gitlab.com/ascape-
h2020/cloud/kubeflow-intro/-/tree/master/nodejs-prediction. 
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Figure 49. Web server request handling. 

 
Figure 50. Prediction wrapping & execution. 
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Notice how little needs to be known about the nature of the model being served by the 
web wrapper. This is because of Docker, and the ability to package images in layers, 
each responsible for a particular aspect. This means that the trained model is part of 
an image layer that the web serving component inherits. In the example we have used 
NodeJS, but swapping to another technology is simple, without any need to intervene 
in packaging the model. 
Model monitoring refers to canning for any irregularities in performance - as well as the 
underlying model's accuracy. This topic is currently under investigation, as the 
homomorphic nature of the data makes this area unique.  
Model updating fully manages the versioning of the models and simplifies the 
promotion and rollback between versions.  
There are two main approaches for implementing Model as a Service (MaaS): model 
as code and model as data. Model as code uses model code directly in a service’s 
implementation. Model as data uses a generic implementation that is driven by a model 
in an intermediate model format like PMML, PFA, ONNX, or TensorFlow’s native 
format. Both approaches are used in different model server implementations in 
Kubeflow. Our research leads us to believe that when determining which 
implementation to use, it would be preferable to go with model as data. It allows for the 
exchange of models between serving instances to be standardized, thus providing 
portability across systems and the enablement of generic model serving solutions. 
Most common serving implementations, like TFServing, ONNX Runtime, Triton, and 
TorchServe, use a model-as-data approach and leverage an intermediate model 
format. Some of these implementations support only one framework, while others 
support multiple. Unfortunately, each of these solutions uses different model formats 
and exposes unique proprietary serving APIs. There is increased friction in swapping 
between model frameworks, as the interfaces behind these implementations are 
different. Taking this into consideration, we have chosen Seldon as implementation for 
model serving. Kubeflow also has good support for it. 
Kubeflow's SDK's composable nature gives the researcher the ability to serve the 
model straight from a Jupyther Notebook (Figure 51). 
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Figure 51. Snippet for serving a model with KFServing and output logs. 

We can then access details about the model configuration parameters and runtime 
metrics (Figure 52, and Figure 53). 
 

 
Figure 52. Details of Kubernetes service responsible for model serving. 
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Figure 53. Parameter monitoring of served model. 

7.2 Implementation technologies for PoC demonstration 

The components used for the cloud-based model training and serving are based on 
Kubernetes and open-source operators running on top. For handling the training 
workflow, we use the Kubeflow project.  
We rely mostly on Kubeflow Pipelines for orchestrating machine learning applications. 
This component allows for structuring data preparation, model training, and the 
deployment step as a direct acyclic graph. Each node in the graph is written in Python 
and packaged as a container. The scheduling of the pipeline execution is done using 
Kubernetes primitives. 
To better structure and manage the machine learning metadata, we use MLFlow's 
Python API.  
We use a serverless approach for model serving, built on KNative, called KFServing, 
that exposes the prediction functionality as an HTTP endpoint. 
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8 Conclusion  

This deliverable reports on current PoC and implementation of different essential 
components and services of the ASCAPE architecture that are going to be fully 
implemented in the ASCAPE prototype until the end of the project. The main outcomes 
of the deliverable are: 

• Essential components of the Edge-Cloud Architecture were carefully 
considered. k3s was used to illustrate the implementation of a Placeholder 
Container for each component in the ASCAPE Architecture. Deployment 
configurations for the ASCAPE Edge Nodes and the ASCAPE Cloud are 
encouraging for further successful continuation of these activities.  

• Developed data management services on small subset of fake/anonymized data 
showed that process of data harmonization, transformations and aggregations 
from different sources can be successfully standardized. Presented mapping of 
data to HL7 FHIR format and their codification to SNOMED CT will most likely 
be applicable on prospectively collected data as well.  

• ML and AI techniques implemented to support and illustrate ASCAPE 
continuous learning, showed to be promising. Comprehensive experiments, 
performed on 10 datasets derived from retrospective data, exhibited satisfactory 
results in all presented activities: AI based data pre-processing, ASCAPE 
federated learning with global and local predictive QoL models, use of 
homomorphic encryption mechanism to collect encrypted patient data. 

• Evaluation of feature attribution and surrogate models (decision tree and linear 
regression) as mechanisms for explainability showed accuracies that are very 
similar to the target models. Being rather promising and relaying on initially 
implemented simulation-based approach, they represent a good starting point 
for further work on explainable AI within the ASCAPE project. In the future work 
the clinical partners will have an important role of interpreting and assessing the 
quality of outputs produced by explainable AI algorithms.  

• Mechanisms that ensure security and privacy of the data within the ASCAPE 
framework, i.e. a security management mechanism, an encryption block and a 
privacy block, are adequately considered and presented. The justification for the 
efficient use of one WS02 Identity Server instance and one WS02 API Manager 
and their deployment in the ASCAPE framework is given. Cloud server 
installation is a good illustration of the usability of the proposed tool. For privacy 
preserving based on DP method selection of appropriate value of epsilon 
parameter influences the accuracy of prediction models. Using different epsilon 
values the PoC demonstration was focused on one dataset and on several 
prediction models. The core ASCAPE HE services are illustrated using an in-
house developed library that supports functions to encrypt and decrypt the data. 

• Selection of Kubeflow framework, that contains a curated set of compatible tools 
specific to ML, is justified. Kubeflow's pipeline system to orchestrate ML 
applications with key steps is illustrated as initial PoC. It was shown as 
appropriate for future full implementation of ASCAPE architecture i.e to serve 
as the base for the Cloud efforts. 
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Overall, the experiments, the evaluations, and the initial implementations of important 
components of the ASCAPE Architecture, are encouraging for future work and for 
continuation of implementation of the ASCAPE architecture. 
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APENDIX A: List of links to the repositories 

Components Repository 
API for transformation and channel • HAPI FHIR repository 
ASCAPE Weather Data Adapter • https://gitlab.ubitech.eu/dsa/ascape/data-

workflow-orchestrator 
• https://gitlab.ubitech.eu/dsa/ascape/data-handler 
• https://gitlab.ubitech.eu/dsa/ascape/data-parser 
• https://gitlab.ubitech.eu/dsa/ascape/data-

explorer 
Fitbit Device Data Adapter • https://gitlab.ubitech.eu/dsa/ascape/data-

workflow-orchestrator 
• https://gitlab.ubitech.eu/dsa/ascape/data-handler 
• https://gitlab.ubitech.eu/dsa/ascape/data-parser 
• https://gitlab.ubitech.eu/dsa/ascape/data-

explorer 
The source code of ASCAPE core 
machine learning services 

• https://gitlab.com/ascape-h2020/machine-
learning/coreedgeml 

The source code of the federated 
learning server and the federated 
learning client 

• https://gitlab.com/ascape-h2020/machine-
learning/fl-prototype 

The source code for model evolution • https://gitlab.com/ascape-h2020/machine-
learning/a3-model-evaluation/-
/tree/master/Homomorphic%20Encryption 

A4-Explainability contains the wrapper 
class for explainable AI, surrogate 
training and -evaluation 

• https://gitlab.com/ascape-h2020/machine-
learning/a4-explainability 

A5-Simulations contains all the code to 
run the simulations itself 

• https://gitlab.com/ascape-h2020/machine-
learning/a4-explainability 

Security Gatekeeper • https://gitlab.com/ascape-h2020/wso2-demo 
ASCAPE DP component • https://gitlab.com/ascape-h2020/machine-

learning/a1-missing-value-imputation/-
/tree/master/DP 

 
 
 
 
 
 
 


